a2 United States Patent
Smith

US009164679B2

US 9,164,679 B2
*Qct. 20, 2015

(10) Patent No.:
(45) Date of Patent:

(54) SYSTEM, METHOD AND COMPUTER
PROGRAM PRODUCT FOR MULTI-THREAD
OPERATION INVOLVING FIRST MEMORY
OF A FIRST MEMORY CLASS AND SECOND
MEMORY OF A SECOND MEMORY CLASS

(71) Applicant: PATENTS1, LLC, Wilmington, DE
(US)

(72) Inventor: Michael S Smith, Palo Alto, CA (US)

(73) Assignee: PATENTSI1, LLC, Wilmington, DE
(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

(21) Appl. No.: 14/589,931

(22) Filed: Jan. 5,2015
(65) Prior Publication Data
US 2015/0143037 Al May 21, 2015

Related U.S. Application Data

(63) Continuation-in-part of application No. 13/441,132,
filed on Apr. 6, 2012, now Pat. No. 8,930,647.

(60) Provisional application No. 61/502,100, filed on Jun.
28, 2011, provisional application No. 61/472,558,
filed on Apr. 6, 2011.

(51) Imt.ClL
GO6F 13/00 (2006.01)
GO6F 13/28 (2006.01)
(Continued)
(52) US.CL
CPC ..o GOG6F 3/061 (2013.01); GOGF 3/065

(2013.01); GOGF 3/0659 (2013.01); GO6F
3/0679 (2013.01); GO6F 9/44557 (2013.01);

READ 1 READ 2

A1 r————X) en—

e x:(’—\x:xﬁ

GO6F 13/4234 (2013.01); GO6F 17/505
(2013.01); GO6F 17/5072 (2013.01); GO6F
2206/1014 (2013.01); HOIL 2224/16225

(2013.01);
(Continued)
(58) Field of Classification Search
CPC oo, GOGF 9/3814; GOG6F 12/0246

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

8/1970 McAuliffe et al.
4/1972 Milton

(Continued)

3,524,169 A
3,659,229 A

FOREIGN PATENT DOCUMENTS

WO 2008131058 A2 10/2008
WO 2008131058 A3 10/2008
(Continued)
OTHER PUBLICATIONS

Li, J., “ANanosensor Device for Cellphone Integration and Chemical
Sensing Network,” DHS Cell—All Phase I Workshop, Jul. 29, 2010,
22 pages.

(Continued)

Primary Examiner — Eric S Cardwell

(74) Attorney, Agent, or Firm — Patrick E. Caldwell, Esq.;
The Caldwell Firm, LLC

(57) ABSTRACT

An apparatus, computer program product, and associated
method/processing unit are provided for utilizing a memory
subsystem including a first memory of a first memory class,
and a second memory of a second memory class communi-
catively coupled to the first memory. In operation, data is
fetched using a time between a plurality of threads.

20 Claims, 50 Drawing Sheets

Szgno

READ 3

CPU READS
PAGE X FROM
X CLASS 1

MEMORY

P4

) s— 4

g
s
s

s
7 PAGEX

—x
7 COPIED FROM
/ e LASS 2 TO

Vi CLASS 1
p e—

) S—
D1
NOR&L
A2 READ
c2
CACHE MISS

bz

1 2 t3

5 8 7 Time

US 9,164,679 B2

Page 2

(1)

(52)

(56)

Int. Cl1.
GO6F 3/06
GO6F 13/42
GO6F 9/445
GO6F 17/50
U.S. CL
CPC

(2006.01)
(2006.01)
(2006.01)
(2006.01)

HO01L2224/4824 (2013.01); HOIL

2224/48091 (2013.01); HOIL 2924/15311

References Cited

U.S. PATENT DOCUMENTS

4,067,060
4,091,418
4,152,649
4,197,580
4,694,468
5,205,173
5,257,413
5,285,474
5,371,760
5,483,557
5,557,653
5,581,505
5,596,638
5,687,733
5,729,612
5,794,163
5,805,950
5,825,873
5,859,522
5,884,191
5,925,942
5,953,674
5,970,092
5,983,100
6,012,105
6,038,457
6,040,933
6,045,512
6,081,724
6,097,943
6,119,022
6,138,036
6,138,245
6,163,690
6,192,238 Bl
6,259,729 Bl
6,285,890 Bl
6,330,247 Bl
6,366,530 Bl
6,371,923 Bl
6,377,825 Bl
6,380,581 Bl
6,385,463 Bl
6,449,492 Bl
6,456,517 B2
6,473,630 Bl
6,476,795 Bl
6,477,390 Bl
6,480,149 Bl
6,496,854 Bl
6,523,124 Bl
6,529,744 Bl
6,546,262 Bl
6,549,790 Bl
6,564,285 Bl
6,603,986 Bl
6,636,749 B2
6,636,918 Bl
6,665,803 B2
6,670,234 B2
6,714,802 Bl
6,751,113 B2
6,765,812 B2

O P e 3 0 B D B e B 3 0 0 B B 0 D B D 0 B 0 B D B O)

1/1978
5/1978
5/1979
4/1980
9/1987
4/1993
10/1993
2/1994
12/1994
1/1996
9/1996
12/1996
1/1997
11/1997
3/1998
8/1998
9/1998
10/1998
1/1999
3/1999
7/1999
9/1999
10/1999
11/1999
1/2000
3/2000
3/2000
4/2000
6/2000
8/2000
9/2000
10/2000
10/2000
12/2000
2/2001
7/2001
9/2001
12/2001
4/2002
4/2002
4/2002
4/2002
5/2002
9/2002
9/2002
10/2002
11/2002
11/2002
11/2002
12/2002
2/2003
3/2003
4/2003
4/2003
5/2003
8/2003
10/2003
10/2003
12/2003
12/2003
3/2004
6/2004
7/2004

Poussart et al.
Ciciora
Choquet

Chang et al.

Cullum

Allen

Warner et al.
Chow et al.
Allen et al.
Webb
Paterson et al.
Lee

Paterson et al.
McKown
Abel et al.
Paterson et al.
Inglese et al.
Duncan et al.
Theobald
Karpus et al.
Theobald
Hutchison, IV
Currivan
Johansson et al.
Rubbmark et al.
Barkat
Khaleghi et al.
Roteliuk et al.
Wilson
Nordwall
Osborn et al.
O’Cinneide
Son et al.
Lilja
Piirainen

Seki

Panian

Chang et al.
Sluiter et al.
Roteliuk et al.
Kennedy et al.
Noble et al.
Lieberman et al.
Kenagy et al.
Kim et al.

Baranowski et al.

Derocher et al.
Gum et al.
Sutherland et al.
Hagersten et al.
Lunsford et al.
Birkler et al.
Freadman
Rubbmark et al.
Mills et al.
Bozoukov
Holmes et al.
Aguilar et al.
Lunsford et al.
Hsu et al.
Barvesten
Bhakta et al.
Anderson

(2013.01)

....... 711/144

6,804,146
6,829,297
6,873,534
6,892,270
6,928,110
6,928,299
6,928,512
6,930,900
6,930,903
6,954,495
6,968,208
6,975,853
6,983,169
6,990,044
7,003,316
7,006,851
7,010,325
7,020,488
7,024,230
7,031,670
7,050,783
7,062,260
7,062,261
7,123,936
7,149,511
7,149,552
7,155,254
7,171,239
7,184,794
7,190,720
7,224,992
7,240,836
7,254,036
7,269,708
7,280,849
7,286,436
7,289,386
7,296,107
7,343,177
7,343,439
7,360,022
7,363,054
7,375,970
7,386,656
7,392,338
7,398,105
7,403,743
7424312
7,435,636
7,442,050
7,472,220
7,492,890
7,493,109
7,523,035
7,526,317
7,529,872
7,532,492
7,532,537
7,555,318
7,558,130
7,558,529
7,558,894
7,565,179
7,565,458
7,571,295
7,580,312
7,581,127
7,590,796
7,598,607
7,603,148
7,609,567
7,612,436
7,619,893
7,619,912
7,620,433
7,622,365
7,622,895
7,623,667
7,627,128

10/2004
12/2004
3/2005
5/2005
8/2005
8/2005
8/2005
8/2005
8/2005
10/2005
11/2005
12/2005
1/2006
1/2006
2/2006
2/2006
3/2006
3/2006
4/2006
4/2006
5/2006
6/2006
6/2006
10/2006
12/2006
12/2006
12/2006
1/2007
2/2007
3/2007
5/2007
7/2007
8/2007
9/2007
10/2007
10/2007
10/2007
11/2007
3/2008
3/2008
4/2008
4/2008
5/2008
6/2008
6/2008
7/2008
7/2008
9/2008
10/2008
10/2008
12/2008
2/2009
2/2009
4/2009
4/2009
5/2009
5/2009
5/2009
6/2009
7/2009
7/2009
7/2009
7/2009
7/2009
8/2009
8/2009
8/2009
9/2009
10/2009
10/2009
10/2009
11/2009
11/2009
11/2009
11/2009
11/2009
11/2009
11/2009
12/2009

Johnson

Xia et al.
Bhakta et al.
Roohparvar
Ougi et al.
Rinne et al.
Ayukawa et al.
Bhakta et al.
Bhakta et al.
Piirainen
Kacines

Fang et al.
Vogel et al.
Kang

Elias et al.
Holmes et al.
Oh

Bleile et al.
Curtiss et al.
May

Curtiss et al.
Vuori
Goldstein et al.
Rydbeck et al.
Bachner, III et al.
Lair

Pinder

Tan et al.
Hess et al.
Fimoff et al.
Patino et al.
Vrotsos et al.
Pauley et al.
Ware

Bailey
Bhakta et al.
Bhakta et al.
Lunsford et al.
Seshadri et al.
Mills et al.
Tian et al.
Elias et al.
Pauley et al.
Rajan et al.
Rajan et al.
Kalogeropoulos
Welch

Pinder et al.
Hanafi
Bhakta et al.
Rajan et al.
Mllani

Munje et al.
Rokusek et al.
Pinder et al.
Schubert et al.
Dobyns et al.
Solomon et al.
Seshadri et al.
Grunzke
Seshadri et al.
Lydon et al.
Hyatt
Thijssen et al.
Sakarda et al.
Rajan et al.
Rajan et al.
Rajan et al.
Chung et al.
Michalak
Rajan et al.
Leeetal.

Yu

Bhakta et al.
Bodley
Parekh
Griffin
Sander et al.
Sander et al.

US 9,164,679 B2

Page 3
(56) References Cited 8,135,900 B2 3/2012 Kunimatsu et al.
8,143,710 B2 3/2012 Cho
U.S. PATENT DOCUMENTS 8,148,763 B2 4/2012 Kimetal.
8,148,807 B2 4/2012 Leeetal.
7,627,307 B2 12/2009 Droste et al. 8,154,901 Bl 4/2012 Leeetal
7,627,352 B2 12/2009 Gauger, Ir. et al. 8,154,935 B2~ 4/2012 Rajan et al.
7,630,202 B2 12/2009 Pauley et al. 8,158967 B2~ 4/2012 Tang etal.
7,633,963 Bl 12/2009 Anderson et al. 8,169,233 B2 5/2012 Ferolito et al.
7,636,274 B2 12/2009 Solomon et al. 8,169,841 B2 5/2012 Johnson et al.
7,643,642 B2 1/2010 Patino et al. 8,173,507 B2 52012 Limetal.
7,650,168 B2 1/2010 Bailey 8,174,105 B2 5/2012 Kwang et al.
7,680,490 B2 3/2010 Bloebaum et al. 8,174,115 B2 5/2012 Chung
7,680,514 B2 3/2010 Cook et al. 8,180,954 B2 5/2012 Kilzer et al.
7.689.168 B2 3/2010 House 8,181,048 B2 5/2012 Rajan et al.
7:715:831 B2 5/2010 Wakefield 8,185,778 B2 5/2012 Kilzer et al.
7,715,873 Bl 5/2010 Biere et al. 8,187,901 B2~ 52012 Sheen
7716411 B2 5/2010 Panabaker et al. 8,189,328 B2 5/2012 Kanapathippillai et al.
7.724.580 B2 5/2010 Rajan ctal. 8,193,646 B2 6/2012 Wood et al.
7,730,338 B2 6/2010 Rajan et al. 8,209,479 B2 6/2012 Rajan et al.
7,761,724 B2 7/2010 Rajan etal. 8,218,705 B2 7/2012 Yopseﬁ Moghaddam et al.
7,762,818 B2* 7/2010 Hoangcccccoumneenn. 439/62 8,244,971 B2 82012 Rajanetal.
7,769,187 Bl 8/2010 Farrar et al. 8,261,041 B2 9/2012 Kunimatsu
7,777,581 B2 8/2010 Pfaffetal. 8,264,903 Bl 9/2012 Leeetal.
7,778,601 B2 82010 Seshadri et al. 8,279,600 Bl 10/2012 Wang et al.
7,779,185 B2 8/2010 Schubert et al. 8,280,714 B2 10/2012 Rajan etal.
7,796,652 B2 9/2010 Reitlingshoefer et al. 8,287,291 Bl 10/2012 Bhakta et al.
7,811,007 Bl 10/2010 Bhakta et al. 8,296,496 B2 10/2012 Mogul et al.
7,813,715 B2 10/2010 McKillop et al. 8,301,833 Bl 10/2012 Chen et al.
7,814,287 B2 10/2010 Pratt 8,315,349 B2 11/2012 Badalone
7,818,036 B2 10/2010 Lair etal. 8,327,104 B2 12/2012 Smith et al.
7,818,037 B2 10/2010 Lair et al. 8,340,953 B2 12/2012 Rajan etal.
7,826,318 B2 11/2010 Holden et al. 8345427 B2 /2013 Pauley etal.
7,835,809 B2 11/2010 Griffin, Jr. 8,359,187 B2 1/2013 Rajan et al.
7,839,643 Bl 11/2010 Yu 8,359,501 B1 1/2013 Leeetal.
7,839,645 B2 11/2010 Pauley et al. 8,359,600 B2 1/2013 Kangetal.
7,840,617 B2* 11/2010 It0 ...oovcovveorrcerererrcenene. 707/822 8,370,566 B2 2/2013 Danilak et al.
7,855,931 B2 12/2010 LaBerge etal. 8,386,833 B2 2/2013 Smith et al.
7,857,225 B2 12/2010 Challa et al. 8,387,045 B2 2/2013 Yasutaka et al.
7,864,627 B2 1/2011 Bhakta et al. 8,397,013 Bl 3/2013 Rosenband et al.
7,869,608 B2 1/2011 Sander et al. 8,407,412 B2 3/2013 Rajan et al.
7,881,150 B2 2/2011 Solomon et al. 8,417,870 B2 4/2013 Leeetal
7,889,786 B2 2/2011 Lapointe 8,446,781 Bl 52013 Rajan etal.
7,902,886 B2 3/2011 Pfaffetal. 8,452,017 B2 52013 Ameretal.
7,916,574 Bl 3/2011 Solomon et al. 8,458,436 B2 6/2013 Kunimatsu et al.
7,940,839 B2 5/2011 Lapointe et al. 8,473,670 B2 6/2013 Sareen etal.
7,941,591 B2 5/2011 Aviles 8,488,325 Bl 72013 Yu
7,978,721 B2 7/2011 Jeddeloh et al. 8,489,837 Bl 7/2013 Lee
8.001.434 Bl 8/2011 Lee et al. 8,516,185 B2 8/2013 Lee et al.
8018723 Bl 92011 Yuetal. 8,516,187 B2 8/2013 Chenet al.
8,019:589 B2 9/2011 Rajan etal. 8,516,188 Bl 8/2013 Solomon et al.
8.033.836 Bl 10/2011 Bhakta et al. 8,566,505 B2 10/2013 Kilzer et al.
8.041.881 B2 10/2011 Rajan et al. 8,566,516 B2 10/2013 Schakel et al.
8,055,833 B2 11/2011 Danilak et al. 8,566,556 B2 10/2013 Rajan etal.
8,060,774 B2 11/2011 Smith et al. 8,589,639 B2 11/2013 Nakai et al.
8,072,837 Bl 12/2011 Solomon et al. 8,595,419 B2 11/2013 Rajan etal.
8,077,535 B2 12/2011 Schakel et al. 8,599,634 Bl 12/2013 Lee et al.
8,081,474 Bl 12/2011 Zohni et al. 8,601,204 B2 12/2013 Rajan et al.
8,081,535 B2 12/2011 Bhakta et al. 8,607,003 B2 12/2013 Bland et al.
8,081,536 Bl 12/2011 Solomon et al. 8,611,123 B2 12/2013 Koh
8,081,537 Bl 12/2011 Bhakta et al. 8,615,679 B2 12/2013 Smith et al.
8,081,677 B2 12/2011 Badalone 8,619,452 B2 12/2013 Rajan etal.
8,089,795 B2 1/2012 Rajan et al. 8,631,193 B2 1/2014 Smith et al.
8,090,897 B2 1/2012 Rajan et al. 8,631,220 B2 1/2014 Smith et al.
8,093,702 B2 1/2012 Lua et al. 8,667,312 B2 3/2014 Rajan et al.
8,103,928 B2 1/2012 Hargan 8,671,243 B2 3/2014 Ch_en et al.
8,106,491 B2 1/2012 Corisis et al. 8,671,244 B2 3/2014 Rajan etal.
8,106,520 B2 1/2012 Keeth et al. 8,675,429 Bl 3/2014 Wangetal.
8.111.534 B2 2/2012 Walker 8,677,060 B2 3/2014 Chen et al.
8111566 BL 2/2012 Wang et al. 8,680,064 Bl 4/2014 Leeetal.
8,112,266 B2 2/2012 Rajan et al. 8,700,834 B2 4/2014 Horn et al.
8,115291 B2 2/2012 Baeketal. 8,705,239 Bl 4/2014 Yuetal.
8,120,044 B2 2/2012 Cho etal. 8,707,104 Bl 4/2014 Jean
8,122,207 B2 2/2012 Rajan et al. 8,710,862 B2 4/2014 Ferolito et al.
8,127,185 B2 2/2012 Jeddeloh 8,713,357 Bl 4/2014 Jean et al.
8,127,204 B2 2/2012 Hargan 8,713,379 B2 4/2014 Takefman et al.
8,130,527 B2 3/2012 Keeth 8,738,851 B2 52014 Kunimatsu et al.
8,130,560 B1 3/2012 Rajan et al. 8,738,853 B2 52014 Ameretal.
8,131,912 B2* 3/2012 Ozawaetal. 711/103 8,745321 B2 6/2014 Rajan et al.
8,134,378 B2 3/2012 Keeth 8,751,732 B2 6/2014 Danilak et al.

US 9,164,679 B2

Page 4
(56) References Cited 2009/0085608 Al 4/2009 Alzheimer
2009/0090950 Al 4/2009 Forbes et al.
U.S. PATENT DOCUMENTS 2009/0091962 Al 4/2009 Chung et al.
2009/0103675 Al 4/2009 Yousefi Moghaddam et al.
8,756,364 Bl 6/2014 Bhakta et al. 2009/0127668 Al 5/2009 Choi
8,760,936 Bl 6/2014 Rajan etal. 2009/0128991 Al 5/2009 Mauritzson
8,773,937 B2 7/2014 Schakel et al. 2009/0166846 Al 7/2009 Pratt et al.
8,782,350 B2 7/2014 Lee et al. 2009/0180257 Al 7/2009 Park et al.
8,787,060 B2 7/2014 Lee 2009/0197394 Al 8/2009 Parekh
2002/0002662 Al 1/2002 Olarig et al. 2009/0206431 Al 8/2009 Bolken et al.
2005/0018495 Al 1/2005 Bhakta et al. 2009/0224822 Al 9/2009 Alzheimer et al.
2005/0027928 Al 2/2005 Avraham et al. 2009/0237970 Al 9/2009 Chung
2005/0094465 Al 5/2005 Gervasi et al. 2009/0255705 Al 10/2009 Pratt
2005/0102444 Al 5/2005 Cruz 2009/0259806 Al 10/2009 Kilzer et al.
2005/0128853 Al 6/2005 Ayukawa etal. 2009/0261457 Al 10/2009 Pratt
2005/0182893 Al 8/2005 Suh 2009/0285031 Al 112009 Rajan et al.
2005/0204091 Al 9/2005 Kilbuck et al. 2009/0300314 Al 12/2009 LaBerge et al.
2005/0251617 Al 11/2005 Sinclair et al. 2009/0300444 Al 12/2009 Jeddeloh
2005/0270037 Al 12/2005 Haynes et al. 2009/0302484 Al 12/2009 Lee etal.
2006/0075402 Al 4/2006 Neiger et al. 2009/0309142 Al 12/2009 Akram
2006/0138630 Al 6/2006 Bhakta 2009/0319703 Al 12/2009 Chung
2006/0203899 Al 9/2006 Gee 2009/0321861 Al 12/2009 Oliver et al.
2006/0294295 Al 12/2006 Fukuzo 2009/0321947 Al 12/2009 Pratt
2007/0192563 Al 8/2007 Rajan etal. 2009/0323206 Al 12/2009 Oliver et al.
2007/0204075 Al 8/2007 Rajan etal. 2010/0110748 AL~ 52010 Best
2007/0236584 Al* 10/2007 Frost-Ruebling 2010/0191896 Al 7/2010 Yang et al.
etal o 348/231.99 2010/0257304 Al 10/2010 Rayin etal.
2008/0025122 Al 1/2008 Schakel et al. 2010/0332635 Al 12/2010 Rogel et al.
2008/0025136 Al 1/2008 Rajan et al. 2011/0066790 Al 3/2011 Mogql etal.
2008/0025137 Al 1/2008 Rajan et al. 2011/0095783 Al 4/2011 Ferolito et al.
2008/0027702 Al 1/2008 Rajan et al. 2011/0113208 Al 5/2011 Jouppi et al.
2008/0027703 Al 1/2008 Rajan et al. 2011/0252263 Al* 10/2011 Ch_o 713/400
2008/0028136 Al 1/2008 Schakel et al. 2012/0011310 Al 1/2012 Rajan etal.
2008/0028137 Al 1/2008 Schakel et al. 2012/0011386 Al 1/2012 Rajan et al.
2008/0031072 Al 2/2008 Rajan et al. 2012/0037878 Al 2/2012 Liu
2008/0037353 Al 2/2008 Rajan ctal. 2012/0038045 Al 2/2012 Lee
2008/0056014 Al 3/2008 Rajan et al. 2012/0042204 Al 2/2012 Smith et al.
2008/0082763 Al 4/2008 Rajan et al. 2012/0059978 Al 3/2012 Rosenband et al.
2008/0103753 Al 5/2008 Rajan et al. 2012/0063194 Al 3/2012 Baek et al.
2008/0104344 Al 5/2008 Shimozono et al. 2012/0070973 Al 3/2012 Sandhu et al.
2008/0109206 Al 5/2008 Rajan et al. 2012/0074584 Al 3/2012 Leeetal.
2008/0109597 Al 5/2008 Schakel et al. 2012/0106228 Al 52012 Lee
2008/0109598 Al 5/2008 Schakel et al. 2012/0109621 Al 5/2012 Rajan etal.
2008/0109629 Al 5/2008 Karamcheti et al. 2012/0124281 Al 5/2012 Rajan etal.
2008/0115006 Al 5/2008 Smith et al. 2012/0126883 Al 5/2012 Juengling
2008/0120443 Al 5/2008 Rajan et al. 2012/0127685 Al 5/2012 Corisis et al.
2008/0123459 Al 5/2008 Rajan et al. 2012/0135567 Al 5/2012 Akram et al.
2008/0126688 Al 5/2008 Rajan et al. 2012/0138927 Al 6/2012 Kang
2008/0126689 Al 5/2008 Rajan etal. 2012/0140583 Al 6/2012 Chung
2008/0239857 Al 10/2008 Rajan et al. 2012/0201088 Al 8/2012 Rajan et al.
2008/0239858 Al 10/2008 Rajan et al. 2012/0203958 Al 82012 Jones et al.
2008/0250408 Al 10/2008 Tsui et al. 2012/0204079 Al 8/2012 Takef_man etal.
2008/0272478 Al 11/2008 Anderson et al. 2012/0206165 Al 82012 Ferolito et al.
2008/0290435 Al 11/2008 Oliver et al. 2012/0226924 Al 9/2012 Rajan etal.
2008/0308946 Al 12/2008 Pratt 2012/0250386 Al 10/2012 Lee et al.
2009/0014876 Al 1/2009 Youn et al. 2012/0254500 Al* 10/2012 Choetal.ccoovvevnnnne.. 711/103
2009/0024789 Al 1/2009 Rajan et al. 2012/0254519 Al 10/2012 Ellis
2009/0026600 Al 1/2009 Koon et al. 2012/0271990 Al 10/2012 Chenet al.
2009/0039492 Al 2/2009 Kang et al. 2012/0317433 Al 12/2012 Ellis et al.
2009/0045489 Al 2/2009 Koon et al. 2013/0007399 Al 1/2013 Smith et al.
2009/0052218 Al 2/2009 Kang 2013/0019076 Al 1/2013 Amidi et al.
2009/0065948 Al 3/2009 Wang 2013/0054881 Al 2/2013 Ellis et al.
2009/0067256 Al 3/2009 Bhattacharyya et al. 2013/0060994 Al 3/2013 Higgins et al.
2009/0085225 Al 4/2009 Park 2013/0061019 Al 3/2013 Fitzpatrick et al.

US 9,164,679 B2
Page 5

(56) References Cited
U.S. PATENT DOCUMENTS

2013/0061101 Al
2013/0086309 Al
2013/0103377 Al
2013/0103897 Al
2013/0132661 Al
2013/0132779 Al
2013/0188424 Al
2013/0191585 Al
2013/0205102 Al
2013/0238849 Al
2013/0254456 Al
2013/0254497 Al
2013/0275795 Al
2013/0282962 Al
2013/0332796 Al
2014/0040568 Al
2014/0040569 Al
2014/0095769 Al
2014/0156919 Al
2014/0156920 Al

3/2013 Fitzpatrick et al.
4/2013 Lee et al.
4/2013 Rajan et al.
4/2013 Rajan et al.
5/2013 Schakel et al.
5/2013 Smith et al.
7/2013 Rajan et al.
7/2013 Rajan et al.
8/2013 Jones et al.
9/2013 Amer et al.
9/2013 Chen et al.
9/2013 Chen et al.
10/2013 Ellis et al.
10/2013 Rub et al.
12/2013 Ellis
2/2014 Leeet al.
2/2014 Solomon et al.
4/2014 Borkenhagen
6/2014 Chen et al.
6/2014 Chen et al.

FOREIGN PATENT DOCUMENTS

WO WO 2010 111694 9/2010

WO 2011126893 A2 8/2011

WO 2011100444 A2 10/2011
OTHER PUBLICATIONS

Pering, T. et al., “The PSI Board: Realizing a Phone-Centric Body
Sensor Network,” 4th International Workshop on Wearable and
Implantable Body Sensor Networks, Mar. 2007, pp. 1-6.

Wang, Z. et al., “Exploiting Smart-Phone USB Connectivity for Fun
and Profit,” ACSAC 10, Dec. 6-10, 2010, 10 pages.

Welte, H., “Anatomy of contemporary GSM cellphone hardware,”
Apr. 16, 2010, pp. 1-11.

Arora, A., “Sensing by the people, for the people & of the people,”
Apr. 21, 2008, 48 pages.

Opdenacker, M., “Linux USB drivers,” Sep. 15, 2009, pp. 1-95.
U.S. Appl. No. 11/226,061.

Takefman, M. L. etal., U.S. Appl. No. 61/457,233, filed Feb. 8, 2011.
U.S. Appl. No. 11/449,435.

Intel, “Intel PXA27x Processor Family,” Memory Subsystem, Jul.
2004, pp. 1-138.

Maxim, “1Gbps to 12.5Gbps; Passive Equalizer for Backplanes and
Cables,” MAX3787, 19-0406, Rev. 1, Dec. 2005, pp. 1-15.

Wang, B. et al., “6b9b Encoding Scheme for Improving Single-
Ended Interface Bandwidth and Reducing Power Consumption with-
out Pin Count Increase,” IEEE, 2007, pp. 25-28.

Chen, Y.-H., “Ad-STAC & 3DIC Technology of ITRIL,” 2010, pp.
1-14.

Schrader, J.H.R et al., “CMOS Transmitter using Pulse-Width Modu-
lation Pre-Emphasis achieving 33dB Loss Compensation at 5-Gb/s,”
2005 Symposium on VLSI Circuits Digest of Technical Papers, pp.
388-391.

Garlepp, B.W.etal., “A Portable Digital DLL for High-Speed CMOS
Interface Circuits,” IEEE Journal of Solid-State Circuits, vol. 34, No.
S, May 1999, pp. 632-644.

D’ Ambrosia, J. et al. “40 Gigabit Ethernet and 100 Gigabit Ethernet
Technology Overview,” Nov. 2008, pp. 1-16.

“The International Technology Roadmap for Semiconductors,” Inter-
connect, 2009, pp. 1-89.

Gustlin, M., “40 and 100 Gigabit Ethernet PCS and PMA Overview,”
Ethernet Summit, Feb. 2010, pp. 1-15.

Intel, “Intel® GW80314 I/O Companion Chip,” Datasheet, Order
No. 273757-003US, Nov. 2004, pp. 1-88.

Gondi, S. etal., “A 10-Gb/s CMOS Merged Adaptive Equalizer/CDR
Circuit for Serial-Link Receivers,” 2006 Symposium on VLSI Cir-
cuits Digest of Technical Papers, IEEE, 2006, pp. 1-2.

Gondi, S. etal., “A 10Gb/s CMOS Adaptive Equalizer for Backplane
Applications,” 2005 IEEE International Solid-State Circuits Confer-
ence, 2005, pp. 1-3.

Lin, X. et al., A 2.5-to 3.5-Gb/s Adaptive FIR Equalizer With Con-
tinuous-Time Wide-Bandwidth Delay Line in 0.25-?m CMOS, IEEE
Journal of Solid-State Circuits, vol. 41, No. 8, Aug. 2006, pp. 1908-
1918.

Chandramouli, S., “A Broadband Passive Delay Line Structure in
0.18 Micron CMOS for a Gigabit Feed Forward Equalizer,” Thesis,
2004, pp. 1-52.

Stojanovic, V. et al., “Adaptive Equalization and Data Recovery in a
Dual-Mode (PAM2/4) Serial Link Transceiver,” 2004, pp. 1-4.

Sun, R. et al., “A Low-Power 20-Gb/s Continuous-Time Adaptive
Passive Equalizer,” Thesis, 2005, pp. 1-71.

Altera, “Using Pre-Emphasis and Equalization with Stratix GX,”
White Paper, Sep. 2003, ver. 1.0, pp. 1-11.

AMP, “DDR2 DIMM 25 Degree Ilmm CL 240 position,” DDR2
DIMM 25 Degree 240—Solder tail, 2005, p. 1.

AMBP, “DDR2 DIMM Socket Imm CL 240 position,” DDR2 DIMM
240—Solder tail, 1998, p. 1.

Ramesh, G., “Design of De-Emphasis and Equalization Circuits for
Gigabit Serial Interconnects,” An Applications Workshop for High-
Performance Design, Sep. 2005, pp. 1-28.

Bar-Niv, A., “Balanced equalization: The I0GBASE-KX4 formula
for error-free transmission over backplanes,” Networking Solutions,
Mar. 2005, pp. 1-4.

Barr, T. W. et al., “Translation Caching: Skip, Don’t Walk (the Page
Table),” ISCA’10, Jun. 19-23, 2010, pp. 1-12.

AMD, “BIOS and Kernel Developer’s Guide (BKDG) for AMD
Family 14h Models 00h-OFh Processors,” BKDG for AMD Family
14h Models 00h-OFh Processors, Feb. 16,2011, Rev. 3.04, pp. 1-403.
Stojanovic, V., “Channel-Limited High-Speed Links: Modeling,
Analysis and Design,” Dissertation, Sep. 2004, pp. 1-180.

Hollis, T. M., “Circuit and Modeling Solutions for High-Speed Chip-
To-Chip Communication,” Dissertation, Apr. 2007, pp. 1-225.
Kloster, J. F. et al., “On the Feasibility of Memory Sharing,” Jun.
2006, pp. 1-132.

Grundy, K. et al., “Designing Scalable 10G Backplane Interconnect
Systems Utilizing Advanced Verification Methodologies,”
DesignCon 2006, pp. 1-20.

Shafer, M. et al., “Connector and Chip Vendors Unite to Produce a
High-Performance 10 Gb/s NRZ-Capable Serial Backplane,”
DesignCon 2003; High-Performance System Design Conference,
2003, pp. 1-19.

Vrazel, M. G. et al., “Overcoming Signal Integrity Issues with
Wideband Crosstalk Cancellation Technology,” DesignCon 2006,
pp. 1-25.

Liu, C.Y. etal., “Comparison of Signaling and Equalization Schemes
in High Speed SerDes (10-25Gbps),” DesignCon 2007, pp. 1-23.
Chen, J. et al., “High Speed Signaling Design: from 1 Gbps to 10
Gbps,” DesignCon East 2004, pp. 1-17.

Buckwalter, J. F., “Deterministic Jitter in Broadband Communica-
tion,” Thesis, 2006, pp. 1-220.

Lee, C. I et al, “DRAM-Aware Last-Level Cache Writeback:
Reducing Write-Caused Interference in Memory Systems,” Apr.
2010, pp. 1-21.

Cook, H. et al., “Virtual Local Stores: Enabling Software-Managed
Memory Hierarchies in Mainstream Computing Environments,”
Technical Report No. UCB/EECS-2009-131, Sep. 24, 2009, pp.
1-24.

Hur, Y. S. et al., “Equalization and Near-End Crosstalk (NEXT)
Noise Cancellation for 20-Gbit/sec 4 PAM Backplane Serial /O
Interconnections,” Dissertation, Dec. 2005, pp. 1-143.

Liu, J. etal., “Equalization in High-Speed Communication Systems,”
IEEE Circuits and Systems Magazine, 2004, pp. 1-14.

Buchali, F. et al., “Fast Eye Monitor for 10 Gbit/s and its Application
for Optical PMD Compensation,” 2000 Optical Society of America,
pp. 1-4.

Fujitsu, “125Gbps Parallel CDR Transceiver (0.18um),” 2002, pp.
1-2.

Dhiman, G. et al., “PDRAM: A Hybrid PRAM and DRAM Main
Memory System,” DAC °09, Jul. 26-31, 2009, pp. 1-6.

US 9,164,679 B2
Page 6

(56) References Cited
OTHER PUBLICATIONS

Avissar, O. et al., “Heterogeneous Memory Management for Embed-
ded Systems,” Cases’01, Nov. 16-17, 2001, pp. 1-10.

Sidiropoulos, S., “High Performance Inter-Chip Signalling,” Tech-
nical Report No. CSL-TR-98-760, Apr. 1998, pp. 1-139.

Huang, H. et al., “Design and Implementation of Power-Aware Vir-
tual Memory,” 2003, pp. 1-14.

Ye, D. et al., “Prototyping a Hybrid Main Memory Using a Virtual
Machine Monitor,” Oct. 2008, 15 slides.

Wilton, S. J. E., “Implementing Logic in FPGA Memory Arrays:
Heterogeneous Memory Architectures,” 2002, pp. 1-6.

Intel, “Intel® 64 and IA-32 Architectures Software Developer’s
Manual,” vol. 2A: Instruction Set Reference, A-M, Order No.
253666-037US, Jan. 2011, pp. 1-848.

Intel, “Intel® 64 and IA-32 Architectures Software Developer’s
Manual,” vol. 3A: System Programming Guide, Part 1, Order No.
253668-037US, Jan. 2011, pp. 1-842.

Intel, “Intel® 64 and IA-32 Architectures Software Developer’s
Manual,” vol. 3B: System Programming Guide, Part 2, Order No.
253669-034US, Mar. 2010, pp. 1-936.

Intel, “Intel® 64 and IA-32 Architectures Software Developer’s
Manual,” vol. 1: Basic Architecture, Order No. 253665-037US, Jan.
2011, pp. 1-540.

“International Technology Roadmap for Semiconductors,” 2009 Edi-
tion, Assembly and Packaging, pp. 1-70.

“IMIS™_Intimate Memory Interface Specification,” Revision 1.0,
Jun. 1, 2008, pp. 1-33.

Hynix, “I/O Interface Design Technology Using ADS,” 2005, 41
slides.

Stachhouse, B. et al., “A 65 nm 2-Billion Transistor Quad-Core
Itanium Processor,” IEEE Journal of Solid-State Circuits, vol. 44, No.
1, Jan. 2009, pp. 18-31.

JEDEC Standard, DDR3 SDRAM Standard, JESD79-3D, Revision
of JESD79-3C, Nov. 2008, Sep. 2009, pp. 1-220.

Balakrishnan, H., “Background: Single-Link Communication,” Fall
2001, Sep. 5, 2001, pp. 1-6.

Micron, “NAND Flash Memory,” 16Gb, 32Gb, 64Gb, 128Gb Asyn-
chronous/Synchronous NAND Features, 2009, pp. 1-158.

Maxim, “Designing a Simple, Small, Wide-band and Low-Power
Equalizer for FR4 Copper Links (Featuring the MAX3785, 1Gbps to
6.4Gbps Equalizer),” DesignCon 2003, HFTA-06.0, 2003, pp. 1-14.
Foster, G., “Measurements of Pre-Emphasis on Altera® Stratix® GX
with the BERTScope 12500A,” Ver. 1, Jun. 2005, pp. 1-7.

Sudan, K. et al., “Micro-Pages: Increasing DRAM Efficiency with
Locality-Aware Data Placement,” ASPLOS’10, Mar. 13-17, 2010,
pp. 1-12.

Hollis, T. M. et al., “Mitigating ISI Through Self-Calibrating Con-
tinuous-Time Equalization,” IEEE Transactions on Circuits and Sys-
tems—I: Regular Papers, vol. 53, No. 10, Oct. 2006, pp. 2234-2245.
Phadke, S. et al., “MLP Aware Heterogeneous Memory System,”
2011 EDAA, pp. 1-6.

National Semiconductor, “EQS0F100—2.5 to 6.125 Gbps fixed
equalizer; for 10 Gigabit Ethernet, storage and telecom backplanes,”
2004, pp. 1-2.

Turudic, A. et al., “Pre-Emphasis and Equalization Parameter Opti-
mization with Fast, Worst-Case/Multibillion-Bit Verification,”
DesignCon 2007, Jan. 2007, pp. 1-28.

Hiraishi, A. et al., “Preferable Improvements and Changes to FB-
DiMM High-Speed Channel for 9.6Gbps Operation,” ELPIDA, Jan.
26, 2007, pp. 1-35.

Ye, D. et al., “Prototyping a Hybrid Main Memory Using a Virtual
Machine Monitor,” 2008, pp. 1-8.

Schrader, JH.R et al., Pulse-Width Modulation Pre-Emphasis
Applied in a Wireline Transmitter, Achieving 33 dB Loss Compen-
sation at 5-Gb/s in 0.13-?m CMOS, IEEE Journal of Solid-State
Circuits, vol. 41, No. 4, Apr. 2006, pp. 990-999.

Toms, T. R., QUALCOMM, CDMA Technologies,“An Assessment
of 3D Interconnect, Equipment Readiness and ITRS 3D,” Jul. 16,
2008, pp. 1-23.

Ousterhout, J. et al., “The Case for RAMClouds: Scalable High-
Performance Storage Entirely in DRAM,” SIGOPS Operating Sys-
tems Review, vol. 43, No. 4, Dec. 2009, pp. 92-105.

Bien, F., “Reconfigurable Equalization for 10-Gb/sec Serial Data
Links in 2 0.18-?m CMOS Technology,” Dissertation, Dec. 2006, pp.
1-121.

Hollis, T. et al., “Reduction of Duty Cycle Distortion through Band-
Pass Filtering,” 2005, pp. 1-4.

Grozing, M. et al., “Sampling Receive Equalizer with Bit-Rate Flex-
ible Operation up to 10 Gbit/s,” IEEE, 2006, pp. 516-519.

Hollis, T. M. et al., “Self-Calibrating Continuous-Time Equalization
Targeting Inter-symbol Interference,” 2006, pp. 1-4.

Analui, B., “Signal Integrity Issues in High-Speed Wireline Links:
Analysis and Integrated System Solutions,” Thesis, 2005, pp. 1-194.
Suchitha V, “Simulation methodology using SigXp 15.1 (SPB) for
enabling DDR2-533 memory interface based on Intel® 945GMS
design,” Session No. 6.10, Intel, pp. 1-36.

Lin, M. et al., “Testable Design for Advanced Serial-Link Transceiv-
ers,” 2007, pp. 1-6.

Shao, J. et al., “The Bit-reversal SDRAM Address Mapping,” 2005,
pp. 1-8.

Texas Instruments, “DC to 4-GBPS Dual 1:2 Multiplexer/Repeater/
Equalizer,” SN65LVCP40, SLLS623D—September 2004—Revised
Feb. 2006, pp. 1-22.

Tiruvuru, R. etal., “Transmission Line based FIR Structures for High
Speed Adaptive Equalization,” ISCAS 2006, IEEE, 2006, pp. 1051-
1054.

Park, H.-J., “Signal Integrity for High Speed Circuit Design,” Tuto-
rial 9 (ISSCC 2006), pp. 1-91.

CIS 501: Introduction to Computer Architecture, Unit 4: Memory
Hierarchy II: Main Memory, CIS 501 (Martin/Roth): Main Memory,
pp. 1-12.

Galloway, P. et al., “Using Creative Silicon Technology to Extend the
Useful Life of Backplane and Card Substrates at 3.125 Gbps and
Beyond,” DesignCon 2001, 2001 High-Performance System Design
Conference, pp. 1-7.

“3D Packing” Newsletter on 3D IS, TSV, WLP & Embedded Tech-
nologies, Dec. 2009, pp. 1-16.

Hoe, J. C., “18-447 Lecture 21: Virtual Memory: Page Tables and
TLBs,” Apr. 13,2009, pp. 1-11.

Kishan, “Virtual Memory Exercises,” Windows Internals Course,
University of Tokyo, Jul. 2003, pp. 1-3.

Schrader, J. H. R., “Wireline Equalization using Pulse-Width Modu-
lation,” 2007, pp. 1-152.

Schrader, J. H. R., “Wireline Equalization using Pulse-Width Modu-
lation,” IEEE 2006 Custom Intergrated Circuits Conference (CICC),
2006, pp. 591-598.

“Micron Technology Announces SyncflashTM Memory, A New
Flash Technology,” 1999, pp. 1.

Markatos, E., “On Using Network RAM as a non-volatile Buffer,”
Aug. 1998, pp. 1-15.

Hong, Seongcheol, “NAND Flash-based Disk Cache Using SLC/
MLC Combined Flash Memory,” SNAPI 2010, 25pgs.

Office Action Summary in U.S. Appl. No. 13/441,132 dated Apr. 3,
2014.

Office Action Summary in U.S. Appl. No. 13/441,132 dated Aug. 18,
2014.

Bornstein, D., “Android—Dalvik VM Internals,” 58 pages, Nov.
2011.

Pering, T., “Intel and Personal Wellness,” 22 pages, Aug. 2009.
Klare, B. et al., “Assessment of H.264 Video Compression on Auto-
mated Face Recognition Performance in Surveillance and Mobile
Video Scenarios,” 8 pages, Apr. 2010.

U.S. Appl. No. 11/226,061, filed Sep. 13, 2005.

U.S. Appl. No. 11/449,435, filed Jun. 7, 2006.

“Memory Management” 55 slides, CSE 451: Operating Systems
Winter 2007, University of Washington, Jan. 28, 2007.

Yuen, R. etal., “A 5Gb/s Transmitter with Reflection Cancellation for
Backplane Transceivers,” pp. 1-4, Sep. 2006.

Ryu, W. H. et al., “High-Frequency Simultaneous Switching Output
Noise (SSO) Simulation Methodology for a DDR333/400 Data Inter-
face,” pp. 1-6, Jun. 27, 2002.

US 9,164,679 B2
Page 7

(56) References Cited
OTHER PUBLICATIONS

Burdach, M., “Physical Memory Forensics,” 53 slides, Black Hat
USA (2006), Aug. 1, 2006.

Buchali, S. et al., “Fast eye monitor for 10 Gbit/s and its application
for optical PMD compensation”, Conf. Opt. Fiber Commun. (OFC)
2001, vol. 2, Mar. 2001.

Hollis, T. M., “Inter-symbol Interference in Manchester Encoded
Data,” pp. 1-7, Oct. 2006.

Encoding—116 slides, University of Illinois, Urbana Champaign,
Course CS 438, Mar. 2008.

Hollis, T., “Mitigating ISI through Self-Calibrating Continuous-
Time Equalization,” 36 slides, Oct. 2006.

Stojanovic, V. et al., “Modeling and Analysis of High-Speed Links,”
pp. 1-49, Mar. 2003.

“Understanding the Linux Virtual Memory Manager,” Chapter 3:
Page Table Management, pp. 33-52, Mel Gorman, Apr. 2004.
Karthick, A. R., “Memory Management and RMAP VM of 2.6,” 14
slides, Jan. 2004,

Suchitha V, “Simulation methodology using SigXp 15.1 (SPB) for
enabling DDR2-533 memory interface based on Intel® 945GMS
design,” Session No. 6.10, Intel, pp. 1-36, Sep. 2006.

Witt, K. et al., “Test & Simulation Results in Support of SAS-2,”
Vitesse, 17 slides, Jan. 2006.

CIS 501: Introduction to Computer Architecture, Unit 4: Memory
Hierarchy II: Main Memory, CIS 501 (Martin/Roth): Main Memory,
pp, 1-12, Sep. 2005.

US 7,965,578, 06/201 1, Bhakta et al. (withdrawn)

US 7,965,579, 06/2011, Solomon et al. (withdrawn)

* cited by examiner

U.S. Patent Oct. 20, 2015 Sheet 1 of 50 US 9,164,679 B2

S'IA-'I ’

1A-102
PHYSICAL MEMORY
MEMORY BUS
1A-110 |« > FIRST MEMORY ,_\}M 04
A\ (MEMORY CLASS 1)
1A-108
SECOND MEMORY A_\JMOG
(MEMORY CLASS 2)

FIGURE 1A

U.S. Patent Oct. 20, 2015 Sheet 2 of 50 US 9,164,679 B2

/- 1B-100

Memory 1B-106

j_ 1B-102 /’_
J 1B-112

| ===
[1B-104

Py 1B-114

Memory Bus /J

1B-116
I/0 Bus #1
1B-110
Chipset
1B-120 I/O Bus #2

Disk

FIGURE 1B

US 9,164,679 B2

Sheet 3 of 50

Oct. 20, 2015

U.S. Patent

]
] e e bbb S B it]]
“ “ L " |
]] i N | s |
L e S | i S o
b P P . @ 1 5!
I I o A Pl I B 0|
! ! = ! a o ¢!) @ I py M
! “ = |O = |O P o = S o s -
o> > > L ¢ . = 5|
> 5 ¢! o > A T,
1 1 Py Q Q [o! 51
e £ o) £ S b g S
m_ Q = [} 0] ! “ e. DI
= o) = = by ! n!
s I = |
d“ m“ = \ “ 7y ! |
1 1 A | ! [
B o= LI KA W TS U IS !
>SN\ "
> /.J) /.)_
ﬁo\ om <« 3 Z &> A
ms N ~ — 00 ~— -
N 0 © 0 QS ~ On/_ N
m o o =Mm X0 -
i i 8
jm—————
s ;
| N
b I
Y o \"\\L Y 5
S ! N 2
S | | < o0
C“ | -~ <
U | <~ \u\\\l’L w
N I w
= [|
= | H !
o //J
=4
— Um
W r.\ 0 o ﬂ
O ON® A

FIGURE 1C

US 9,164,679 B2

Sheet 4 of 50

Oct. 20, 2015

U.S. Patent

200

226

X <
ol N [0
& IR 8 3
u\L o N N
e
i] 7 7
“ - N
“))
2] 2]
! © o |8
- &) O
> s > = >
e Il e} o)
£ 1le £ £
L, |E o] @
= |0 = =
T =
3
Bt A ___
=
............ | o ___. <
o)
- > N
gl [o B
83 3 N
N
Y

CPU

FIGURE 2

US 9,164,679 B2

Sheet 5 of 50

Oct. 20, 2015

U.S. Patent

300

326

338

306
308

M1
Memory Class 1 [
M2

Virtual Memory

CPU

FIGURE 3

US 9,164,679 B2

Sheet 6 of 50

Oct. 20, 2015

U.S. Patent

400
/

r/’j— 432 VMy
|

438 Main Memory

408 Memory Class 2

410 Storage #1

446 Secondary Storage
483

434 Memory Class 3

436 Memory Class 4

o
T

442 Data #1
444 Disk #1

P~

T

j— 402

CPU

~.
.

Storage #2

FIGURE 4

US 9,164,679 B2

Sheet 7 of 50

Oct. 20, 2015

U.S. Patent

500
f

I,/J_ 532 VMy
|

544 Disk #1

j_ 502

CPU

.

)]
I\ (=)}
W. - ? ® ™ P
s %] 2 $ %
)] o w by & 5
> = O > Pl o & = -
c > o] g D > 3
c £ 5 2 - @ 5) p
e © c 5 £ Y
= £ @ Q 2 £ ©
9 5] Q] 2
= ® s = I~ o} @2 . = a
o R o] 0 77] o o] © o] o~
Q v © N =) 7! © — < 0 o 9 < <
o) =] © 0 <5 o o 5] 3 © 0)
g 3 re] 3 0 rs] ©
Jpipiyi WNr |||||||| &m |||||\MM |||||| U/u ||||||||||||||| Wyu/ ||||||||||||||||||| . ||||||||“.|| |||k|| \\L
/ A | | H |
LT | [
.................... 1
- -]
A ~, ©)
o . e s el .)
m A Sow v T e N T .
o D] =
g " - prs) E
{0 o “ o
Bl 5 _
\ (S |
]
. AY AY H
IIIII S N S N R i
. e -]
< o o~ 5 3 &
2 B 10 - o w0 o g S O g
; Te) =] @ I32) « w o
¢ O 0 e} e IYs) Tl 1] o
,..1‘.. e ..nw. ®
) 2
»

FIGURE 5

U.S. Patent Oct. 20, 2015 Sheet 8 of 50 US 9,164,679 B2

BGOO

602 RECEIVE A FIRST INSTRUCTION, THE FIRST
\/\ INSTRUCTION BEING ASSOCIATED WITH A
COPY OPERATION

Y

COPY A FIRST REGION OF MEMORY TO A
604 SECOND REGION OF MEMORY, AT LEAST ONE
\/\ ASPECT OF THE COPYING OF THE FIRST
REGION OF MEMORY TO THE SECOND REGION
OF MEMORY BEING INDEPENDENT OF AT
LEAST ONE ASPECT OF A CPU OPERATION OF
A CPU

FIGURE 6

US 9,164,679 B2

Sheet 9 of 50

Oct. 20, 2015

U.S. Patent

V/ 700

738

742

CPU

FIGURE 7

U.S. Patent

Oct. 20, 2015

CPU

Bus #1

A
T

Sheet 10 of 50

800
(-

US 9,164,679 B2

D\
\
\

L804

848

\ 802

826
Memory

806
Memory Class 1
(C1)

i 808
Memory Class 2
(C2)

\ 832

Virtual Memory

810

834
Memory Class 3
(C3)

e 842

FIGURE 8

U.S. Patent Oct. 20, 2015 Sheet 11 of 50 US 9,164,679 B2

CPU

Oy il
926

Memory

M1 1956 _ >_
------ He e ool \ B1.M1.C1 932 934

\7 VMy1 | VMy2
906

JREE 25 S f

2] x

B1.M2.C2

Bus #1 M2
/—_,\ ________::____ q J
B1 i
| i 1908
| : c2
< ! |
l |
[}
904 :
[}
948 i
1

\— 954

B1.M3.C2 J

$—952
I-----:l------l
B1.D1.C2

\ | R
902 i E

)— 942
A Data #1

FIGURE 9

U.S. Patent

Oct. 20, 2015 Sheet 12 of 50

cru

Mamory

Bus #1 M1

Memary Class 1

M2

Bus #2

Memory Class 2

FIGURE 10

US 9,164,679 B2

Page Fils Cache

Page File RAM Disk

Data RAM Disk

U.S. Patent Oct. 20, 2015 Sheet 13 of 50 US 9,164,679 B2
Ve 1100
1102
Memo
|__ _ry _____________ Z‘__ _____________ 9
|
| 1104
G e :
1 I 1
| O B[] o
| }_ |
! 1108 1148 PPt |
~
: .7 —1118 1120 N |
/
| /M1 |j|\;2 M1 &2 \ :
| RD1 CMD1 WR1 [1 |5 P \ |
b | 1124 126> 1128 ' 2|6 2 |6] |
| ‘? = V3|7 3 |7 / |
| Lo\ 4 |8 4 |8 /
| A \ / |
| %l % S Pl |
! 1146 [< 1147 {< 1150 =~ -
i - |
' > > N 1o -] |
| 1130 i< 1132 § £ 1134 |
| :
| "-. |
| |
| c2 |
| |
| |
, |
| |
, |
' |
| |
| |
| |
' |
' |
' |
|
|
| 11a S |
M2 |
|

FIGURE 11

U.S. Patent

Oct. 20, 2015

Sheet 14 of 50

US 9,164,679 B2

Seear

W2

M

0O 1225505 }i P

1 2 c2 i .=

o5 T (oo 1228 il

........ S 1228
@ {07}
ca] .-
1220w|&—_|
Memory Class 3 P
L - - - - - ____ =

FIGURE 12

U.S. Patent Oct. 20, 2015 Sheet 15 of 50 US 9,164,679 B2
e 1300
1302
Memo
F—_— rl ____________ _Z—_ _____________ |
|
|
| 1304 1306
| 7 7 :
'][] M1 N M2 |
: 12 r—1316 1 2 |
- =~ |
: Vs - ~ AN |
| g 1318 1320 \\ |
/| m3[D1 M3[{;1 \ |
Il | 2|68 2 | 4 |
I \| 3|8 8 | 5 /
R 6)/ :
| Ne s |
| ~N - _ - d |
I e -
|
: Memory Class 1 |%| Memory Class 2 |%| [
|
[1310 1308 1312
| /- 7 /- |
| £ £ |
| M3 D1
I [:l D I:l I
: 1 2 CX 5 6 |
N |
! N FT G |
| 1314— = b e
3
, |
|
| cY :
I e P
N D - _ 1330 :
| -
|
|
|
: [l L] |
: P F |
| Memory Class 3 :

FIGURE 13

U.S. Patent Oct. 20, 2015

Sheet 16 of 50 US 9,164,679 B2

S 1400

1402
PHYSICAL MEMORY
MEMORY BUS 140
1410 | o FRﬂMWDM’_A\j44
f\) (MEMORY CLASS 1)
1408
1406

SECOND MEMORY | |
(MEMORY CLASS 2)

FIGURE 14

U.S. Patent

Oct. 20, 2015 Sheet 17 of 50

150i/\

RECEIVE A RECLASSIFICATION INSTRUCTION
BY A PHYSICAL MEMORY SUB-SYSTEM

'

1504 \/\

IDENTIFY A PORTION OF THE PHYSICAL
MEMORY SUB-SYSTEM

l

1506

v

RECLASSIFY THE IDENTIFIED PORTION OF THE
PHYSICAL MEMORY SUB-SYSTEM, IN
RESPONSE TO RECEIVING THE
RECLASSIFICATION INSTRUCTION, IN ORDER
TO SIMULATE AN OPERATION

FIGURE 15

US 9,164,679 B2

51 500

U.S. Patent Oct. 20, 2015 Sheet 18 of 50 US 9,164,679 B2

FIGURE 16

U.S. Patent

Oct. 20, 2015 Sheet 19 of 50

f 1730

Call Phone

Wiredass Link

CPU

I

I

[

” :)

I

| C:
I

[

| D:
[

[

| .
I E.
[

[

e e e e e - =

FIGURE 17

US 9,164,679 B2

Optional
Data Disk

DRAM

[rata RAM Disk

Page File Cache

Page File RAM Disk

U.S. Patent Oct. 20, 2015 Sheet 20 of 50 US 9,164,679 B2

I
I I
| |
| M2 |
Tz m] R m|
|
| Memory Class 1 N Memory Class 2 M :
|
| — 1832 — 1834 :
|) /
[T i I S A I S T A T "t T S I
I D e e sttt :
: L[_EI_-______@__-___I |
— e (e o o— — — -y e e e e e e I
A eI NCEEN Ol |
' Page :
' Page File Data |
' File Page Cache Data Page Cache |
' RAM File RAM RAM File RAM |
: Disk Cache Disk Disk Memory i i Disk |
I
:)— 1820)— 1822 L 1824 L 1826 L 1828 X |
| 1830 |
| Memory Class 3 :
|

FIGURE 18

U.S. Patent Oct. 20, 2015 Sheet 21 of 50 US 9,164,679 B2

1900 1908
1902 v //
/‘/ Memory

//1910
M
CPU < emory Bus >l - Buffer
Chip
1904 1906
//1912 /1914
DRAM NAND Flash

Memory Class 1 Memory Class 2

FIGURE 19

/— 2000

Memory 2002
Memory
Class 1

Buffer Chip
Memory Bus
CPU -t ot »a—» DRAM
2004
Memory
2008 2010 Class 2
Flash

FIGURE 20

U.S. Patent Oct. 20, 2015 Sheet 22 of 50 US 9,164,679 B2

2100
/—

Memory
Memory Bus]
CPU -t -t o Buffer Chip
Memory
Class 1
2104 — >| SRAM
Class 2
—— DRAM
Memory
Class 3
—P Flash

FIGURE 21

U.S. Patent Oct. 20, 2015 Sheet 23 of 50 US 9,164,679 B2

f 2200

/— 2204

/— 2202 Mormory

Memory Bus]
CPU -t Pt - Buffer Chip
2906 Memory
NS~ Class 1
2210

. SRAM
Memory
Class 2

T DRAM

2208

Memory
Class 3

> Flash

FIGURE 22

U.S. Patent Oct. 20, 2015 Sheet 24 of 50 US 9,164,679 B2

2300
f
2330 (1) _K 2330 (N)

' Motherboard 2320 \
32

2325 2324

N
a0}

2310

2326
CPU Sockets Memaory

Platform Chassis

FIGURE 23A

U.S. Patent Oct. 20, 2015 Sheet 25 of 50 US 9,164,679 B2

o 2340 (N}

- 2350 (1)
' 2350 (M)
2342 {13

2342 (N}

FIGURE 23B

U.S. Patent Oct. 20, 2015 Sheet 26 of 50 US 9,164,679 B2

(‘ 2360

2330
Memory f

o 2364 2362
Memory
Class 1
CPU ————P —p
Memory Memory Memory
Bus #1 Bus #2 Class 2
FIGURE 23C

s 2374 5‘ 2376 Memory
Memory
/ Class 1
- >
Memory Memory
Bus Class 2

FIGURE 23D

U.S. Patent Oct. 20, 2015 Sheet 27 of 50 US 9,164,679 B2

2382
Memory / s 2384 (1)
cPU s 2386 (1)
j 2388 (1)
Memory
Bus

2384 (2)
& 2386 (2)
B 2388 (2)

In 2384 (3)

2384 (N)
& 2386 (N)
Bs 2388 (N)

\;\ \;\ \‘U\ _\‘\\
Y

FIGURE 23E

U.S. Patent

FIGURE 24A

Oct. 20, 2015 Sheet 28 of 50 US 9,164,679 B2
f 2390
j_ 2394 Memory
CPU 2392
Memory
Class 1
-t L
Memory Memory
Bus Class 2
FIGURE 23F
S2400
ADDRESS BUS
>
CONTROL BUS
CPU > MENMORY
DATA BUS
- >

U.S. Patent Oct. 20, 2015 Sheet 29 of 50 US 9,164,679 B2

2450
READ COMMAND 3
ADDRESS X X
CONTROL X X
DATA RESULT
DATA X X
t1 t2 Time
FIGURE 24B
2500
MEMORY B
FIRST MEMORY
(MEMORY CLASS 1)
PAGE X
MEMORY BUS “\\I
CPU |« >
25.A2| 25-c2| 25-D2]
\ 4 \ 4 \ 4
SECOND MEMORY
(MEMORY CLASS 2)
PAGE X
AA\\I

FIGURE 25

US 9,164,679 B2

Sheet 30 of 50

Oct. 20, 2015

U.S. Patent

awil

9¢ J¥N9OId
9 1] 12!] 21 13
X———————X avay
Q3AV13a ANV
»fl \ SSIN FHOVD
X—————X
X———X avad TTYINHON

— ﬂ

ﬁ ¢avay 1avay

0092

cd

(/48]

[AY

La

10

v

U.S. Patent Oct. 20, 2015 Sheet 31 of 50 US 9,164,679 B2

VIRTUAL MEMORY REAL MEMORY 2o
ADDRESS ADDRESS
J
, . > MEMORY
2
3
PAGE TABLE
y 4
5 [
5 PAGE X
7
8
9
: PAGE MISS
. LOGIC
THREADS
CPU
BY
L4
PAGE FILE
PAGE X

FIGURE 27

US 9,164,679 B2

Sheet 32 of 50

Oct. 20, 2015

U.S. Patent

X 39vd H

X 39vd u\.

/I‘

(Z SSV19 AHOWIIN)
AHOWI ANOD3S

A A A

K 3 3
120-8¢ |€078¢ [Zv-8¢

A

/l‘

(1 SSV19 AHOWAN)
AHOINA 1S¥I4

AHOINANW

008¢

S

8¢ FANSOI4
M
Ndd
SAVIYHL
19071 .
SSIN A9Yd :
6
8
YA
9
ta—> S
-8¢
HAITIOHLNOD J19vL 14
10 AMOWIIW 29vd e
-8¢ FA
LY < L
-8¢
{
ss3adaav
AHONWAN TVNLAIA

US 9,164,679 B2

Sheet 33 of 50

Oct. 20, 2015

U.S. Patent

6¢ NSOIH
awil V! 9}) 2! € a 13
-
X——X
’ SSIIN AHOVD
L SSV1D \ /
OLZSSY10/ 7/ \
IWO¥H a3IdO9 ,
X3ovd X————X
/
/
/
/ avay
X———X
» TVINHON
e
X———X

AHOWIW rl\
L SSV10 X———X X———X ———x
INO¥4 X 3DVd

sSav3ad Ndd

oomw

XX XX XX
€ avad ¢ avad I avad

cd

[AS)

(A

1a

28]

v

U.S. Patent Oct. 20, 2015 Sheet 34 of 50 US 9,164,679 B2

3000

>

30-A1 30-A3
. 30-C3

30-C1 MEMORY 30-D3
BUFFER

30-D1 MEMORY
CLASS 1

/N

30-A2
30-C2
30-D2

MEMORY
CLASS 2

| MEMORY

FIGURE 30

U.S. Patent Oct. 20, 2015 Sheet 35 of 50 US 9,164,679 B2

3100

DIMM MEMORY

&_/DRAM {_/BUFFER

A nmnnnmm

NAND FLASH

{_/

T T T T T T T T AT T T AT AT

)

DIMM CONNECTOR

FIGURE 31

U.S. Patent Oct. 20, 2015 Sheet 36 of 50 US 9,164,679 B2

3200
ADDRESS S
00 —— 01 ~\ 00 0001 0100
01 01— 0010 1010
10 10 0100 1100
11 11 0010 0111
PAGE
TABLE DRAM

FIGURE 32A

3250

ADDRESS S

00— —__(3) O,

\-‘ |
T B0t 0101 g——— 0010 1010
¢—/// \\
110 — = 01 — ~
111 @ ~0011 0101
PAGE DRAM

TABLE

FLASH
FIGURE 32B

U.S. Patent Oct. 20, 2015 Sheet 37 of 50 US 9,164,679 B2

@ rj’»OO

CPU ADDRESS LOOKUP
o FOR PAGE X

FETCH
DATA

CPU ISSUES SPECIAL
COMMAND TO MEMORY

A

COPY PAGE X FROM
MC2 TO MC1

Y

- CPU ISSUES READ
" | COMMAND FOR PAGE X

~ © O 6

PAGE X READY?

FIGURE 33

U.S. Patent Oct. 20, 2015 Sheet 38 of 50 US 9,164,679 B2

53400

MEMORY BUS
CPU
PHYSICAL MEMORY
-t |
VM1 VM2 FIRST MEMORY
(MEMORY CLASS 1)
MEMORY
‘ CONTROLLER
—
ADDRESS SECOND MEMORY
TRANSLATION (MEMORY CLASS 2)
HYPERVISOR

FIGURE 34

U.S. Patent Oct. 20, 2015 Sheet 39 of 50 US 9,164,679 B2

33500

MEMORY BUS

CPU PHYSICAL MEMORY

FIRST MEMORY

Ve MEMORY CLASS 1
sl COPY 1 ()
COPY 3

] | —==

f >
\ PAGE X(1) SECOND MEMORY
(MEMORY CLASS 2)

PAGE X(2) PAGE X(3) —1—

\> /
W
THIRD MEMORY
(MEMORY CLASS 3)

COPY 2

FIGURE 35

U.S. Patent Oct. 20, 2015 Sheet 40 of 50 US 9,164,679 B2

BUS 1 BUS 2 SGOO

BUFFER CHIP
MEMORY
c —
PU - CLASS 2
I BUS 3
MEMORY
CLASS 1 | MEMORY
CLASS 3
FIGURE 36
BUS 1 BUS 2
g <
BUFFER CHIP MEMORY
CPU |e—» «— 2
1 CLASS 1
BUS3 — “\p t
BUFFER CHIP
2
BUS 4 — _p ¢
MEMORY

FIGURE 37 CLASS 2

U.S. Patent Oct. 20, 2015 Sheet 41 of 50 US 9,164,679 B2

BUS 1

3800
MEMORY S
CLASS 1

CPU - ———p

v
1 BUS 2
ﬂ_/
BUFFER CHIP
MEMORY
CLASS 2
FIGURE 38
MEMORY
CLASS 1
3900
BUS 1 BUS 2 S
BUFFER CHIP
CPU > <—» DRAM MEMORY
CLASS 2
BUS 3
»| FLASH

FIGURE 39

U.S. Patent Oct. 20, 2015 Sheet 42 of 50 US 9,164,679 B2

gooo

MEMORY
N CLASS 1
® |
N+1 N+2
4
MEMORY
CLASS 2
MFT F1 F2 F3 Fa N

C

VIRTUAL
MEMORY

FIGURE 40

U.S. Patent Oct. 20, 2015 Sheet 43 of 50

d2 =RL
WL=RL-1 (DDR2)
RLD = RL + d1 +d3

WL =WLD + d3 — d4

WLD = RLD -1
d4 = 2d3 + d1

FIGURE 41
WL=RL - K (DDR3)

d4 = 2d3 + dL + (K-1)

FIGURE 42

US 9,164,679 B2

4100

>

4200

US 9,164,679 B2

Sheet 44 of 50

Oct. 20, 2015

U.S. Patent

€Y _NOId

o

(Z SSY1D AHOW3N)
AYOI3IN ANOD3S

-

(1L SSY1D AMOIW3N)
AHOWAW 1SHI4

AJOWIN TVIISAH

— (Z)X 3DVd

| _ (L)X 39vd

HOLVOO0TIV

AJONIN

3ld

vd

vd

VA

oomm

SNg AMOW3IN

Nndo

| _— dviny

|_—378Vv1 39vd

U.S. Patent Oct. 20, 2015 Sheet 45 of 50 US 9,164,679 B2

§400

PAGE SWAP

'

ALLOCATE
NEW PAGE

:

MAP PA TO PTE

'

COPY (1) TO (2)

!

UPDATE PT

!

UPDATE TLB

'

RELEASE OLD
PAGE

O @ 66 6 60

FIGURE 44

U.S. Patent

US 9,164,679 B2

34500

PAGE TABLE — |

Oct. 20, 2015 Sheet 46 of 50
MEMORY
MEMORY MEMORY
CLASS 1 CLASS 2
VA | PA PA | PTE
[~ /v
RMAP
BUFFER
o CACHE

FIGURE 45

U.S. Patent Oct. 20, 2015 Sheet 47 of 50 US 9,164,679 B2

34600

64
4//H1
4//H2
H3
CACHE LINE <
NUMBER
CACHE LINE
=648 / H4

0

0 256K

PAGE NUMBER
PAGE SIZE = 4 KB

FIGURE 46

U.S. Patent Oct. 20, 2015 Sheet 48 of 50 US 9,164,679 B2

54700

ADDRESS

L.

31 g 12 11 g 0

PHYSICAL OFFSET
PAGE NUMBER
RANK pganK COLUNIN BYTE

- 77)

31 28 27 2625 1312 32 0

RANK ROW BANK COLUMN BYTE

- 7 7

31 2827 1614 1312 32 0

FIGURE 47

US 9,164,679 B2

Sheet 49 of 50

Oct. 20, 2015

U.S. Patent

8Y 3dNOl4d

¢ SSVY1D

AHOWAIN sng
vivd AHONIN

YH €H _

=] o] PP

I SSV1D
ndo
onan [\ dIHD ¥344n9 \ N
(z) dvin SS3¥aav (1) dVIN SS3¥aav
JOHLNOD
oomw

U.S. Patent Oct. 20, 2015 Sheet 50 of 50

MAIN
MEMORY

CENTRAL
PROCESSOR

czu SECONDARY
STORAGE

BUS

czu GRAPHICS
PROCESSOR

US 9,164,679 B2

4900

4901

4904

4910

c:> DISPLAY

—

4902

FIGURE 49

4906

4908

US 9,164,679 B2

1
SYSTEM, METHOD AND COMPUTER
PROGRAM PRODUCT FOR MULTI-THREAD
OPERATION INVOLVING FIRST MEMORY
OF A FIRST MEMORY CLASS AND SECOND
MEMORY OF A SECOND MEMORY CLASS

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application is a continuation-in-part of, and
claims priority to U.S. patent application Ser. No. 13/441,
332, filed Apr. 6, 2012, entitled “MULTIPLE CLASS
MEMORY SYSTEMS,” which claims priority to U.S. Prov.
App. No. 61/472,558 that was filed Apr. 6, 2011 and entitled
“MULTIPLE CLASS MEMORY SYSTEM” and U.S. Prov.
App. No. 61/502,100 that was filed Jun. 28, 2011 and entitled
“SYSTEM, METHOD, AND COMPUTER PROGRAM
PRODUCT FOR IMPROVING MEMORY SYSTEMS,” all
of'which are incorporated herein by reference in their entirety
for all purposes. If any definitions (e.g. figure reference signs,
specialized terms, examples, data, information, etc.) from any
related material (e.g. parent application, other related appli-
cation, material incorporated by reference, material cited,
extrinsic reference, etc.) conflict with this application (e.g.
abstract, description, summary, claims, etc.) for any purpose
(e.g. prosecution, claim support, claim interpretation, claim
construction, etc.), then the definitions in this application
shall apply to the description that follows the same.

BACKGROUND
Field of the Invention

Embodiments of the present invention generally relate to
memory systems and, more specifically, to memory systems
that include different memory technologies.

BRIEF SUMMARY

An apparatus, computer program product, and associated
method/processing unit are provided for utilizing a memory
subsystem including a first memory of a first memory class,
and a second memory of a second memory class communi-
catively coupled to the first memory. In operation, data is
fetched using a time between a plurality of threads.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

So that the features of various embodiments of the present
invention can be understood, a more detailed description,
briefly summarized above, may be had by reference to various
embodiments, some of which are illustrated in the accompa-
nying drawings. It is to be noted, however, that the accompa-
nying drawings illustrate only embodiments and are therefore
not to be considered limiting of the scope of the invention, for
the invention may admit to other effective embodiments. The
following detailed description makes reference to the accom-
panying drawings that are now briefly described.

FIG. 1A shows a multi-class memory apparatus for receiv-
ing instructions via a single memory bus, in accordance with
one embodiment.

FIG. 1B shows an exemplary system using main memory
with multiple memory classes, in accordance with another
embodiment.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 1C shows a virtual memory (VMy) in an example of
a computer system using a main memory with multiple
memory classes, in accordance with another embodiment.

FIG. 2 shows a page write in a system using main memory
with multiple memory classes, in accordance with another
embodiment.

FIG. 3 shows a page read in a system using main memory
with multiple memory classes, in accordance with another
embodiment.

FIG. 4 shows copy operations corresponding to memory
reads in a system using main memory with multiple memory
classes, in accordance with another embodiment.

FIG. 5 shows copy operations corresponding to memory
writes in a system using main memory with multiple memory
classes, in accordance with another embodiment.

FIG. 6 shows a method for copying a page between differ-
ent classes of memory, independent of CPU operation, in
accordance with another embodiment.

FIG. 7 shows a system using with multiple memory
classes, where all memory is on one bus, in accordance with
another embodiment.

FIG. 8 shows a system with three classes of memory on one
bus, in accordance with another embodiment.

FIG. 9 shows a system with multiple classes and multiple
levels of memory on one bus, in accordance with another
embodiment.

FIG. 10 shows a system with integrated memory and stor-
age using multiple memory classes, in accordance with
another embodiment.

FIG. 11 shows a memory system with two memory classes
containing pages, in accordance with another embodiment.

FIG. 12 shows a memory system with three memory
classes containing pages, in accordance with another embodi-
ment.

FIG. 13 shows a memory system with three memory
classes containing memory pages and file pages, in accor-
dance with another embodiment.

FIG. 14 shows a multi-class memory apparatus for
dynamically allocating memory functions between different
classes of memory, in accordance with one embodiment.

FIG. 15 shows a method for reclassifying a portion of
memory, in accordance with one embodiment.

FIG. 16 shows a DIMM using multiple memory classes, in
accordance with another embodiment.

FIG. 17 shows a computing platform employing a memory
system with multiple memory classes included on a DIMM,
and capable of coupling to an Optional Data Disk, in accor-
dance with another embodiment.

FIG. 18 shows a memory module containing three memory
classes, in accordance with another embodiment.

FIG. 19 shows a system coupled to multiple memory
classes using only a single memory bus, and using a buffer
chip, in accordance with another embodiment.

FIG. 20 shows a CPU coupled to a Memory using multiple
different memory classes using only a single Memory Bus,
and employing a buffer chip with embedded DRAM memory,
in accordance with another embodiment.

FIG. 21 shows a system with a buffer chip and three
memory classes on a common bus, in accordance with
another embodiment.

FIG. 22 shows a system with a buffer chip and three
memory classes on separate buses, in accordance with
another embodiment.

FIG. 23A shows a system, in accordance with another
embodiment.

FIG. 23B shows a computer system with three DIMMs, in
accordance with another embodiment.

US 9,164,679 B2

3

FIGS. 23C-23F show exemplary systems, in accordance
with various embodiments.

FIG. 24A shows a system using a Memory Bus comprising
an Address Bus, Control Bus, and bidirectional Data Bus, in
accordance with one embodiment.

FIG. 24B shows a timing diagram for a Memory Bus (e.g.,
as shown in FIG. 24A, etc.), in accordance with one embodi-
ment.

FIG. 25 shows a system with the PM comprising memory
class 1 and memory class 2, in accordance with one embodi-
ment.

FIG. 26 shows a timing diagram for read commands, in
accordance with one embodiment.

FIG. 27 shows a computing system with memory system
and illustrates the use of a virtual memory address (or virtual
address, VA), in accordance with one embodiment.

FIG. 28 shows a system with the PM comprising memory
class 1 and memory class 2 using a standard memory bus, in
accordance with one embodiment.

FIG. 29 shows a timing diagram for a system employing a
standard memory bus (e.g. DDR2, DDR3, DDRA4, etc.), in
accordance with one embodiment.

FIG. 30 shows a memory system where the PM comprises
a buffer chip, memory class 1 and memory class 2, in accor-
dance with one embodiment.

FIG. 31 shows the design of a DIMM that is constructed
using a single buffer chip with multiple DRAM and NAND
flash chips, in accordance with one embodiment.

FIG. 32A shows a method to address memory using a Page
Table, in accordance with one embodiment.

FIG. 32B shows a method to map memory using a window,
in accordance with one embodiment.

FIG. 33 shows a flow diagram that illustrates a method to
access PM that comprises two classes of memory, in accor-
dance with one embodiment.

FIG. 34 shows a system to manage PM using a hypervisor,
in accordance with one embodiment.

FIG. 35 shows details of copy methods in a memory system
that comprises multiple memory classes, in accordance with
one embodiment.

FIG. 36 shows a memory system architecture comprising
multiple memory classes and a buffer chip with memory, in
accordance with one embodiment.

FIG. 37 shows a memory system architecture comprising
multiple memory classes and multiple buffer chips, in accor-
dance with one embodiment.

FIG. 38 shows a memory system architecture comprising
multiple memory classes and an embedded buffer chip, in
accordance with one embodiment.

FIG. 39 shows a memory system with two-classes of
memory: DRAM and NAND flash, in accordance with one
embodiment.

FIG. 40 shows details of page copying methods between
memory classes in a memory system with multiple memory
classes, in accordance with one embodiment.

FIG. 41 shows the timing equations and relationships for
the connections between a buffer chip and a DDR2 SDRAM
for a write to the SDRAM as shown in FIG. 48, in accordance
with one embodiment.

FIG. 42 shows the timing equations and relationships for
the connections between a buffer chip and a DDR3 SDRAM
for a write to the SDRAM as shown in FIG. 48, in accordance
with one embodiment.

FIG. 43 shows a system including components used for
copy involving modification of the CPU page table, in accor-
dance with one embodiment.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 44 shows a technique for copy involving modification
of'the CPU page table, in accordance with one embodiment.

FIG. 45 shows a memory system including Page Table,
buffer chip, RMAP Table, and Cache, in accordance with one
embodiment.

FIG. 46 shows a memory system access pattern, in accor-
dance with one embodiment.

FIG. 47 shows memory system address mapping functions,
in accordance with one embodiment.

FIG. 48 shows a memory system that alters address map-
ping functions, in accordance with one embodiment.

FIG. 49 illustrates an exemplary system in which the vari-
ous architecture and/or functionality of the various previous
embodiments may be implemented.

While the invention is susceptible to various modifications,
combinations, and alternative forms, various embodiments
thereof are shown by way of example in the drawings and will
herein be described in detail. It should be understood, how-
ever, that the accompanying drawings and detailed descrip-
tion are not intended to limit the invention to the particular
form disclosed, but on the contrary, the intention is to cover all
modifications, combinations, equivalents and alternatives
falling within the spirit and scope of the present invention as
defined by the relevant claims.

DETAILED DESCRIPTION

Glossary Terms/Definitions and Description of Exemplary
Embodiments (Where Applicable)

A physical memory (PM) is memory including physical
objects (e.g. chips, packages, multi-chip packages, etc.) or
memory components (e.g. semiconductor memory cells). PM
may, in exemplary embodiments, include various forms of
solid-state (e.g. semiconductor, magnetic, etc.) memory (e.g.
NAND flash, MRAM, PRAM, etc.), solid-state disk (SSD),
or other disk, magnetic media, etc. For example, in one
embodiment, the physical memory may include semiconduc-
tor memory cells. Furthermore, in various embodiments, the
physical memory may include, but is not limited to, flash
memory (e.g. NOR flash, NAND flash, etc.), random access
memory (e.g. RAM, SRAM, DRAM, MRAM, PRAM, etc.),
a solid-state disk (SSD) or other disk, magnetic media, and/or
any other physical memory that meets the above definition.

A virtual memory (VM) is a memory address space, inde-
pendent of how the underlying PM is constructed (if such PM
exists). Note that while VM is the normal abbreviation for
virtual memory, VMy will be used as an abbreviation to avoid
confusion with the abbreviation “VM,” which is used for
virtual machine.

A memory system is a system using one or more classes of
physical memory. In various embodiments, the memory sys-
tem may or may not use one or more VMys. In different
embodiments, a memory system may comprise one or more
VMys; may comprise one or more PMs; or may comprise one
or more VMys and one or more PMs. A VMy may comprise
one more classes of PM. A PM may comprise one more VMy
structures (again structures are used and the use of a term such
as VMy types is avoided, to avoid possible confusion).

A storage system includes a memory system that com-
prises magnetic media or other storage devices (e.g. a hard-
disk drive (HDD) or solid-state disk (SSD) or just disk). If the
storage devices include SSDs that include NAND flash, that
may also be used as memory for example, definitions of
storage versus memory may become ambiguous. If there is
the possibility of ambiguity or confusion, it may be noted
when, for example, an SSD is being used for memory (e.g. log

US 9,164,679 B2

5
file, or cache, etc) or when, for example, memory is being
used for disk (e.g. RAM disk, etc.).

In various embodiments, the storage system may or may
not comprise one or more physical volumes (PVs). APV may
comprise one or more HDDs, HDD partitions, or logical unit
numbers (LUNs) of a storage device.

A partition is a logical part of a storage device. For
example, an HDD partition is a logical part of an HDD. A
LUN is a number used to identify a logical unit (LU), which
is that part of storage device addressed by a storage protocol.
Examples of storage protocols include: SCSI, SATA, Fibre
Channel (FC), iSCS], etc.

Volume management treats PVs as sequences of chunks
called physical extents (PEs). Volume managers may have
PEs of a uniform size or of variable size PEs that can be split
and merged.

Normally, PEs map one-to-one to logical extents (LEs).
With mirroring of storage devices (multiple copies of data,
e.g. on different storage devices), multiple PEs map to each
LE. PEs are part of a physical volume group (PVGQG), a set of
same-sized PVs that act similarly to hard disks in a RAID1
array. PVGs are usually stored on different disks and may also
be on separate data buses to increase redundancy.

A system may pool LEs into a volume group (VG). The
pooled LEs may then be joined or concatenated together in a
logical volume (V). An LV is a virtual partition. Systems
may use an LV as a raw block device (also known as raw
device, or block device) as though it was a physical partition.
For example a storage system may create a mountable file
system on an LV, or use an LV as swap storage, etc.

In this description, where the boundary and differences
between a memory system and a storage system may be
blurred, an LV may comprise one or more PMs and a PM may
comprise one or more LVs. If there is the possibility of ambi-
guity or confusion, it may be noted when, for example, an LV
comprises one or more PMs and when, for example, a PM
may comprise one or more LVs.

Communicatively coupled means coupled in a way that
functions to allow a signal (e.g. a data signal, a control signal,
a bus, a group of signals, or other electric signal) to be com-
municated between the communicatively coupled items.

As used herein, memory devices are generally defined as
integrated circuits that are composed primarily of memory
(storage) cells, such as DRAMs (Dynamic Random Access
Memories), SRAMs (Static Random Access Memories),
FeRAMs (Ferro-Electric RAMs), MRAMs (Magnetic Ran-
dom Access Memories), Flash Memory and other forms of
random access and related memories that store information in
the form of electrical, optical, magnetic, chemical, biological
or other means. Dynamic memory device types may include
FPM DRAMs (Fast Page Mode Dynamic Random Access
Memories), EDO (Extended Data Out) DRAMs, BEDO
(Burst EDO) DRAMSs, SDR (Single Data Rate) Synchronous
DRAMSs, DDR (Double Data Rate) Synchronous DRAMs,
DDR2, DDR3, DDR4, or any of the expected follow-on
devices and related technologies such as Graphics RAMs,
Video RAMs, LP RAM (Low Power DRAMs) which are
often based on the fundamental functions, features and/or
interfaces found on related DRAM:s.

Memory devices may include chips (die) and/or single or
multi-chip or multi-die packages of various types, assem-
blies, forms, and configurations. In multi-chip packages, the
memory devices may be packaged with other device types
(e.g. other memory devices, logic chips, CPUs, hubs, buffers,
intermediate devices, analog devices, programmable devices,
etc.) and may also include passive devices (e.g. resistors,
capacitors, inductors, etc.). These multi-chip packages may

30

35

40

45

6

include cooling enhancements (e.g. an integrated heat sink,
heat slug, fluids, gases, micromachined structures,
micropipes, capillaries, combinations of these, etc.) that may
be further attached to the carrier or another nearby carrier or
other heat removal or cooling system.

Although not necessarily shown in all the Figures, memory
module support devices (e.g. buffer(s), buffer circuit(s),
buffer chip(s), register(s), intermediate circuit(s), power sup-
ply regulation, hub(s), re-driver(s), PLL(s), DLL(s), non-
volatile memory, SRAM, DRAM, logic circuits, analog cir-
cuits, digital circuits, diodes, switches, LEDs, crystals, active
components, passive components, combinations of these and
other circuits, etc.) may be comprised of multiple separate
chips (e.g. die, dice, integrated circuits, etc.) and/or compo-
nents, may be combined as multiple separate chips onto one
or more substrates, may be combined into a single package
(e.g. using die stacking, multi-chip packaging, etc.) or even
integrated onto a single device based on tradeoffs such as:
technology, power, space, weight, cost, etc.

One or more of the various passive devices (e.g. resistors,
capacitors, inductors, etc.) may be integrated into the support
chip packages, or into the substrate, board, PCB, or raw card
itself, based on tradeoffs such as: technology, power, space,
cost, weight, etc. These packages may include an integrated
heat sink or other cooling enhancements (e.g. such as those
described above, etc.) that may be further attached to the
carrier or another nearby carrier or other heat removal or
cooling system.

Memory devices, intermediate devices and circuits, hubs,
buffers, registers, clock devices, passives and other memory
support devices etc. and/or other components may be
attached (e.g. coupled, connected, etc.) to the memory sub-
system and/or other component(s) via various methods
including solder interconnects, conductive adhesives, socket
structures, pressure contacts, electrical/mechanical/optical
and/or other methods that enable communication between
two or more devices (e.g. via electrical, optical, or alternate
means, etc.).

The one or more memory modules (or memory sub-
systems) and/or other components/devices may be electri-
cally/optically connected to the memory system, CPU com-
plex, computer system or other system environment via one
or more methods such as soldered interconnects, connectors,
pressure contacts, conductive adhesives, optical intercon-
nects and other communication and power delivery methods.
Connector systems may include mating connectors (male/
female), conductive contacts and/or pins on one carrier mat-
ing with a male or female connector, optical connections,
pressure contacts (often in conjunction with a retaining and/
or closure mechanism) and/or one or more of various other
communication and power delivery methods. The intercon-
nection(s) may be disposed along one or more edges of the
memory assembly and/or placed a distance from an edge of
the memory subsystem depending on such application
requirements as ease of upgrade, ease of repair, available
space and/or volume, heat transfer constraints, component
size and shape and other related physical, electrical, optical,
visual/physical access, requirements and constraints, etc.
Electrical interconnections on a memory module are often
referred to as contacts, pins, connection pins, tabs, etc. Elec-
trical interconnections on a connector are often referred to as
contacts or pins.

As used herein, a page is a fixed-length block of memory
that is contiguous in virtual memory.

As used herein, the term memory subsystem refers to, but
is not limited to: one or more memory devices; one or more
memory devices and associated interface and/or timing/con-

US 9,164,679 B2

7

trol circuitry; and/or one or more memory devices in conjunc-
tion with memory buffer(s), register(s), hub device(s), other
intermediate device(s) or circuit(s), and/or switch(es). The
term memory subsystem may also refer to one or more
memory devices, in addition to any associated interface and/
or timing/control circuitry and/or memory buffer(s), register
(s), hub device(s) or switch(es), assembled into substrate(s),
package(s), carrier(s), card(s), module(s) or related assembly,
which may also include connector(s) or similar means of
electrically attaching the memory subsystem with other cir-
cuitry. The memory modules described herein may also be
referred to as memory subsystems because they include one
or more memory device(s), register(s), hub(s) or similar
devices.

The integrity, reliability, availability, serviceability, perfor-
mance etc. of the communication path, the data storage con-
tents, and all functional operations associated with each ele-
ment of a memory system or memory subsystem may be
improved by using one or more fault detection and/or correc-
tion methods. Any or all of the various elements of a memory
system or memory subsystem may include error detection
and/or correction methods such as CRC (cyclic redundancy
code, or cyclic redundancy check), ECC (error-correcting
code), EDC (error detecting code, or error detection and
correction), LDPC (low-density parity check), parity, check-
sum or other encoding/decoding methods suited for this pur-
pose. Further reliability enhancements may include operation
re-ry (e.g. repeat, re-send, etc.) to overcome intermittent or
other faults such as those associated with the transfer of
information, the use of one or more alternate, stand-by, or
replacement communication paths to replace failing paths
and/or lines, complement and/or re-complement techniques
or alternate methods used in computer, communication, and
related systems.

The use of bus termination is common in order to meet
performance requirements on buses that form transmission
lines, such as point-to-point links, multi-drop buses, etc. Bus
termination methods include the use of one or more devices
(e.g. resistors, capacitors, inductors, transistors, other active
devices, etc. or any combinations and connections thereof,
serial and/or parallel, etc.) with these devices connected (e.g.
directly coupled, capacitive coupled, AC connection, DC
connection, etc.) between the signal line and one or more
termination lines or points (e.g. a power supply voltage,
ground, a termination voltage, another signal, combinations
of these, etc.). The bus termination device(s) may be part of
one or more passive or active bus termination structure(s),
may be static and/or dynamic, may include forward and/or
reverse termination, and bus termination may reside (e.g.
placed, located, attached, etc.) in one or more positions (e.g.
at either or both ends of a transmission line, at fixed locations,
at junctions, distributed, etc.) electrically and/or physically
along one or more of the signal lines, and/or as part of the
transmitting and/or receiving device(s). More than one termi-
nation device may be used for example if the signal line
comprises a number of series connected signal or transmis-
sion lines (e.g. in daisy chain and/or cascade configuration(s),
etc.) with different characteristic impedances.

The bus termination(s) may be configured (e.g. selected,
adjusted, altered, set, etc.) in a fixed or variable relationship to
the impedance of the transmission line(s) (often but not nec-
essarily equal to the transmission line(s) characteristic
impedance), or configured via one or more alternate approach
(es) to maximize performance (e.g. the useable frequency,
operating margins, error rates, reliability or related attributes/
metrics, combinations of these, etc.) within design con-

15

25

35

40

45

50

55

8

straints (e.g. cost, space, power, weight, performance, reli-
ability, other constraints, combinations of these, etc.).

Additional functions that may reside local to the memory
subsystem and/or hub device include write and/or read buff-
ers, one or more levels of memory cache, local pre-fetch
logic, data encryption and/or decryption, compression and/or
decompression, protocol translation, command prioritization
logic, voltage and/or level translation, error detection and/or
correction circuitry, data scrubbing, local power management
circuitry and/or reporting, operational and/or status registers,
initialization circuitry, performance monitoring and/or con-
trol, one or more co-processors, search engine(s) and other
functions that may have previously resided in other memory
subsystems. By placing a function local to the memory sub-
system, added performance may be obtained as related to the
specific function, often while making use of unused circuits
within the subsystem.

Memory subsystem support device(s) may be directly
attached to the same assembly (e.g. substrate, base, board,
package, structure, etc.) onto which the memory device(s) are
attached (e.g. mounted, connected, etc.) to a separate sub-
strate (e.g. interposer, spacer, layer, etc.) also produced using
one or more of various materials (e.g. plastic, silicon,
ceramic, etc.) that include communication paths (e.g. electri-
cal, optical, etc.) to functionally interconnect the support
device(s) to the memory device(s) and/or to other elements of
the memory or computer system.

Transfer of information (e.g. using packets, bus, signals,
wires, etc.) along a bus, (e.g. channel, link, cable, etc.) may be
completed using one or more of many signaling options.
These signaling options may include such methods as single-
ended, differential, time-multiplexed, encoded, optical or
other approaches, with electrical signaling further including
such methods as voltage or current signaling using either
single or multi-level approaches. Signals may also be modu-
lated using such methods as time or frequency, multiplexing,
non-return to zero (NRZ), phase shift keying (PSK), ampli-
tude modulation, combinations of these, and others. Voltage
levels are expected to continue to decrease, with 1.8V, 1.5V,
1.35V, 1.2V, 1V and lower power and/or signal voltages of the
integrated circuits.

One or more clocking methods may be used within the
memory system, including global clocking, source-synchro-
nous clocking, encoded clocking or combinations of these
and/or other methods. The clock signaling may be identical to
that of the signal lines, or may use one of the listed or alternate
techniques that are more conducive to the planned clock
frequency or frequencies, and the number of clocks planned
within the various systems and subsystems. A single clock
may be associated with all communication to and from the
memory, as well as all clocked functions within the memory
subsystem, or multiple clocks may be sourced using one or
more methods such as those described earlier. When multiple
clocks are used, the functions within the memory subsystem
may be associated with a clock that is uniquely sourced to the
memory subsystem, or may be based on a clock that is derived
from the clock related to the signal(s) being transferred to and
from the memory subsystem (such as that associated with an
encoded clock). Alternately, a unique clock may be used for
the signal(s) transferred to the memory subsystem, and a
separate clock for signal(s) sourced from one (or more) of the
memory subsystems. The clocks themselves may operate at
the same or frequency multiple of the communication or
functional frequency, and may be edge-aligned, center-
aligned or placed in an alternate timing position relative to the
signal(s).

US 9,164,679 B2

9

Signals coupled to the memory subsystem(s) include
address, command, control, and data, coding (e.g. parity,
ECC, etc.), as well as other signals associated with requesting
or reporting status (e.g. retry, etc.) and/or error conditions
(e.g. parity error, etc.), resetting the memory, completing
memory or logic initialization and other functional, configu-
ration or related information etc. Signals coupled from the
memory subsystem(s) may include any or all of the signals
coupled to the memory subsystem(s) as well as additional
status, error, control etc. signals, however generally will not
include address and command signals.

Signals may be coupled using methods that may be con-
sistent with normal memory device interface specifications
(generally parallel in nature, e.g. DDR2, DDR3, etc.), or the
signals may be encoded into a packet structure (generally
serial in nature, e.g. FB-DIMM etc.), for example, to increase
communication bandwidth and/or enable the memory sub-
system to operate independently of the memory technology
by converting the received signals to/from the format required
by the receiving memory device(s).

Memory devices (e.g. memory modules, memory circuits,
memory integrated circuits, etc.) are used in many applica-
tions (e.g. computer systems, calculators, cellular phones,
etc.). The packaging (e.g. grouping, mounting, assembly,
etc.) of memory devices varies between these different appli-
cations. A memory module is a common packaging method
that uses a small circuit board (e.g. PCB, raw card, card, etc.)
often comprised of random access memory (RAM) circuits
on one or both sides of the memory module with signal and/or
power pins on one or both sides of the circuit board. A dual
in-line memory module (DIMM) comprises one or more
memory packages (e.g. memory circuits, etc.). DIMMs have
electrical contacts (e.g. signal pins, power pins, connection
pins, etc.) on each side (e.g. edge etc.) of the module. DIMMs
are mounted (e.g. coupled etc.) to a printed circuit board
(PCB) (e.g. motherboard, mainboard, baseboard, chassis,
planar, etc.). DIMMs are designed for use in computer system
applications (e.g. cell phones, portable devices, hand-held
devices, consumer electronics, TVs, automotive electronics,
embedded electronics, lap tops, personal computers, work-
stations, servers, storage devices, networking devices, net-
work switches, network routers, etc.). In other embodiments
different and various form factors may be used (e.g. cartridge,
card, cassette, etc.).

The number of connection pins on a DIMM varies. For
example: a 240 connector pin DIMM is used for DDR2
SDRAM, DDR3 SDRAM and FB-DIMM DRAM; a 184
connector pin DIMM is used for DDR SDRAM.

Example embodiments described in this disclosure include
computer system(s) with one or more central processor units
(CPU) and possibly one or more I/O unit(s) coupled to one or
more memory systems that contain one or more memory
controllers and memory devices. In example embodiments,
the memory system(s) includes one or more memory control-
lers (e.g. portion(s) of chipset(s), portion(s) of CPU(s), etc.).
In example embodiments the memory system(s) include one
or more physical memory array(s) with a plurality of memory
circuits for storing information (e.g. data, instructions, etc.).

The plurality of memory circuits in memory system(s) may
be connected directly to the memory controller(s) and/or
indirectly coupled to the memory controller(s) through one or
more other intermediate circuits (or intermediate devices e.g.
hub devices, switches, buffer chips, buffers, register chips,
registers, receivers, designated receivers, transmitters, driv-
ers, designated drivers, re-drive circuits, etc.).

Intermediate circuits may be connected to the memory
controller(s) through one or more bus structures (e.g. a multi-

10

15

20

25

30

40

45

50

55

60

65

10

drop bus, point-to-point bus, etc.) and which may further
include cascade connection(s) to one or more additional inter-
mediate circuits and/or bus(es). Memory access requests are
transmitted by the memory controller(s) through the bus
structure(s). In response to receiving the memory access
requests, the memory devices may store write data or provide
read data. Read data is transmitted through the bus structure
(s) back to the memory controller(s).

In various embodiments, the memory controller(s) may be
integrated together with one or more CPU(s) (e.g. processor
chips, multi-core die, CPU complex, etc.) and supporting
logic; packaged in a discrete chip (e.g. chipset, controller,
memory controller, memory fanout device, memory switch,
hub, memory matrix chip, northbridge, etc.); included in a
multi-chip carrier with the one or more CPU(s) and/or sup-
porting logic; or packaged in various alternative forms that
match the system, the application and/or the environment.
Any of these solutions may or may not employ one or more
bus structures (e.g. multidrop, multiplexed, point-to-point,
serial, parallel, narrow/high speed links, etc.) to connect to
one or more CPU(s), memory controller(s), intermediate cir-
cuits, other circuits and/or devices, memory devices, etc.

A memory bus may be constructed using multi-drop con-
nections and/or using point-to-point connections (e.g. to
intermediate circuits, to receivers, etc.) on the memory mod-
ules. The downstream portion of the memory controller inter-
face and/or memory bus, the downstream memory bus, may
include command, address, write data, control and/or other
(e.g. operational, initialization, status, error, reset, clocking,
strobe, enable, termination, etc.) signals being sent to the
memory modules (e.g. the intermediate circuits, memory cir-
cuits, receiver circuits, etc.). Any intermediate circuit may
forward the signals to the subsequent circuit(s) or process the
signals (e.g. receive, interpret, alter, modify, perform logical
operations, merge signals, combine signals, transform, store,
re-drive, etc.) if it is determined to target a downstream cir-
cuit; re-drive some or all of the signals without first modifying
the signals to determine the intended receiver; or perform a
subset or combination of these options etc.

The upstream portion of the memory bus, the upstream
memory bus, returns signals from the memory modules (e.g.
requested read data, error, status other operational informa-
tion, etc.) and these signals may be forwarded to any subse-
quent intermediate circuit via bypass or switch circuitry or be
processed (e.g. received, interpreted and re-driven if it is
determined to target an upstream or downstream hub device
and/or memory controller in the CPU or CPU complex; be
re-driven in part or in total without first interpreting the infor-
mation to determine the intended recipient; or perform a
subset or combination of these options etc.).

In different memory technologies portions of the upstream
and downstream bus may be separate, combined, or multi-
plexed; and any buses may be unidirectional (one direction
only) or bidirectional (e.g. switched between upstream and
downstream, use bidirectional signaling, etc.). Thus, for
example, in JEDEC standard DDR (e.g. DDR, DDR2, DDR3,
DDR4, etc.) SDRAM memory technologies part of the
address and part of the command bus are combined (or may
be considered to be combined), row address and column
address are time-multiplexed on the address bus, and read/
write data uses a bidirectional bus.

Inalternate embodiments, a point-to-point bus may include
one or more switches or other bypass mechanism that results
in the bus information being directed to one of two or more
possible intermediate circuits during downstream communi-
cation (communication passing from the memory controller
to a intermediate circuit on a memory module), as well as

US 9,164,679 B2

11

directing upstream information (communication from an
intermediate circuit on a memory module to the memory
controller), possibly by way of one or more upstream inter-
mediate circuits.

Insome embodiments the memory system may include one
or more intermediate circuits (e.g. on one or more memory
modules etc.) connected to the memory controller via a cas-
cade interconnect memory bus, however other memory struc-
tures may be implemented (e.g. point-to-point bus, a multi-
drop memory bus, shared bus, etc.). Depending on the
constraints (e.g. signaling methods used, the intended oper-
ating frequencies, space, power, cost, and other constraints,
etc.) various alternate bus structures may be used. A point-to-
point bus may provide the optimal performance in systems
requiring high-speed interconnections, due to the reduced
signal degradation compared to bus structures having
branched signal lines, switch devices, or stubs. However,
when used in systems requiring communication with multiple
devices or subsystems, a point-to-point or other similar bus
will often result in significant added cost (e.g. component
cost, board area, increased system power, etc.) and may
reduce the potential memory density due to the need for
intermediate devices (e.g. buffers, re-drive circuits, etc.).
Functions and performance similar to that of a point-to-point
bus can be obtained by using switch devices. Switch devices
and other similar solutions offer advantages (e.g. increased
memory packaging density, lower power, etc.) while retain-
ing many of the characteristics of a point-to-point bus. Multi-
drop bus solutions provide an alternate solution, and though
often limited to a lower operating frequency can offer a cost/
performance advantage for many applications. Optical bus
solutions permit significantly increased frequency and band-
width potential, either in point-to-point or multi-drop appli-
cations, but may incur cost and space impacts.

Although not necessarily shown in all the Figures, the
memory modules or intermediate devices may also include
one or more separate control (e.g. command distribution,
information retrieval, data gathering, reporting mechanism,
signaling mechanism, register read/write, configuration, etc.)
buses (e.g. a presence detect bus, an 12C bus, an SMBus,
combinations of these and other buses or signals, etc.) that
may be used for one or more purposes including the determi-
nation of the device and/or memory module attributes (gen-
erally after power-up), the reporting of fault or other status
information to part(s) of the system, calibration, temperature
monitoring, the configuration of device(s) and/or memory
subsystem(s) after power-up or during normal operation or
for other purposes. Depending on the control bus character-
istics, the control bus(es) might also provide a means by
which the valid completion of operations could be reported by
devices and/or memory module(s) to the memory controller
(s), or the identification of failures occurring during the
execution of the main memory controller requests, etc.

As used herein the term buffer (e.g. buffer device, buffer
circuit, buffer chip, etc.) refers to an electronic circuit that
includes temporary storage and logic In some embodiments,
a buffer may receive signals at one rate (e.g. frequency) and
deliver signals at another rate. In some embodiments, a buffer
is a device that may also provide compatibility between two
signals (e.g., changing voltage levels or current capability,
changing logic function, etc.).

As used herein, hub is a device containing multiple ports
that may be capable of being connected to several other
devices. The term hub is sometimes used interchangeably
with the term buffer. A port is a portion of an interface that
serves an [/O function (e.g., a port may be used for sending
and receiving data, address, and control information over one

10

20

25

30

35

40

45

50

55

60

65

12

of the point-to-point links, or buses). A hub may be a central
device that connects several systems, subsystems, or net-
works together. A passive hub may simply forward messages,
while an active hub (e.g. repeater, amplifier, etc.) may also
modify the stream of data which otherwise would deteriorate
over a distance. The term hub, as used herein, refers to a hub
that may include logic (hardware and/or software) for per-
forming logic functions.

As used herein, the term bus refers to one of the sets of
conductors (e.g., signals, wires, traces, and printed circuit
board traces or connections in an integrated circuit) connect-
ing two or more functional units in a computer. The data bus,
address bus and control signals may also be referred to
together as constituting a single bus. A bus may include a
plurality of signal lines (or signals), each signal line having
two or more connection points that form a main transmission
line that electrically connects two or more transceivers, trans-
mitters and/or receivers. The term bus is contrasted with the
term channel that may include one or more buses or sets of
buses.

As used herein, the term channel (e.g. memory channel
etc.) refers to an interface between a memory controller (e.g.
a portion of processor, CPU, etc.) and one of one or more
memory subsystem(s). A channel may thus include one or
more buses (of any form in any topology) and one or more
intermediate circuits.

As used herein, the term daisy chain (e.g. daisy chain bus
etc.) refers to a bus wiring structure in which, for example,
device (e.g. unit, structure, circuit, block, etc.) A is wired to
device B, device B is wired to device C, etc. In some embodi-
ments the last device may be wired to a resistor, terminator, or
other termination circuit etc. In alternative embodiments any
or all of the devices may be wired to a resistor, terminator, or
other termination circuit etc. In a daisy chain bus, all devices
may receive identical signals or, in contrast to a simple bus,
each device may modify (e.g. change, alter, transform, etc.)
one or more signals before passing them on.

A cascade (e.g. cascade interconnect, etc.) as used herein
refers to a succession of devices (e.g. stages, units, or a
collection of interconnected networking devices, typically
hubs or intermediate circuits, etc.) in which the hubs or inter-
mediate circuits operate as logical repeater(s), permitting for
example data to be merged and/or concentrated into an exist-
ing data stream or flow on one or more buses.

As used herein, the term point-to-point bus and/or link
refers to one or a plurality of signal lines that may each
include one or more termination circuits. In a point-to-point
bus and/or link, each signal line has two transceiver connec-
tion points, with each transceiver connection point coupled to
transmitter circuits, receiver circuits or transceiver circuits.

As used herein, a signal (or line, signal line, etc.) refers to
one or more electrical conductors or optical carriers, gener-
ally configured as a single carrier or as two or more carriers,
in a twisted, parallel, or concentric arrangement, used to
transport at least one logical signal. A logical signal may be
multiplexed with one or more other logical signals generally
using a single physical signal but logical signal(s) may also be
multiplexed using more than one physical signal.
Conventions

Terms that are special to the field of the invention or spe-
cific to this description may, in some circumstances, be
defined in this description. Further, the first use of such terms
(which may include the definition of that term) may be high-
lighted in italics just for the convenience of the reader. Simi-
larly, some terms may be capitalized, again just for the con-
venience of the reader. It should be noted that such use of
italics and/or capitalization, by itself, should not be construed

US 9,164,679 B2

13

as somehow limiting such terms: beyond any given definition,
and/or to any specific embodiments disclosed herein, etc.

In this description there may be multiple figures that depict
similar structures with similar parts or components. Thus, as
an example, to avoid confusion an Object in FIG. 1 may be
labeled “Object (1)” and a similar, but not identical, Object in
FIG. 2 is labeled “Object (2)”, etc. Again, it should be noted
that use of such protocol, by itself, should not be construed as
somehow limiting such terms: beyond any given definition,
and/or to any specific embodiments disclosed herein, etc.

In the following detailed description and in the accompa-
nying drawings, specific terminology and images are used in
order to provide a thorough understanding. In some instances,
the terminology and images may imply specific details that
are not required to practice all embodiments. Similarly, the
embodiments described and illustrated are representative and
should not be construed as precise representations, as there
are prospective variations on what is disclosed that may be
obvious to someone with skill in the art. Thus this disclosure
is not limited to the specific embodiments described and
shown but embraces all prospective variations that fall within
its scope. For brevity, not all steps may be detailed, where
such details will be known to someone with skill in the art
having benefit of this disclosure.

This description focuses on improvements to memory sys-
tems and in particular to memory systems that include differ-
ent memory technologies.

Electronic systems and computing platforms may use sev-
eral different memory technologies: faster local memory
based on semiconductor memory (e.g. SDRAM) with access
times measured in first units (e.g. nanoseconds); flash
memory (e.g. NAND flash) with access times measured in
second units (e.g. microseconds); and magnetic media (disk
drives) with access times measured in third units (e.g. milli-
seconds). In some embodiments, systems may use higher-
speed memory (e.g. SDRAM, etc.) on a dedicated high-speed
memory bus (e.g. DDR4, etc.) and lower speed memory (e.g.
NAND flash, etc.) and/or disk storage (e.g. disk drive, etc.) on
a separate slower 1/O bus (e.g. PCI-E, etc.).

In this description several implementations of memory
systems are presented that use different memory technologies
in combination (e.g. SDRAM with NAND flash, SRAM with
SDRAM, etc.). In this description each different memory
technology is referred to as a different class of memory in
order to avoid any confusion with other terms. For example,
the term class is used, in this context, instead of the term
memory type (or type of memory) since memory type is used,
in some contexts, as a term related to caching.

The use of multiple memory classes may, in some embodi-
ments, allow different trade-offs to be made in system design.
For example, inthe 2011 timeframe, the cost per bit of DRAM
is greater than the cost per bit of NAND flash, which is greater
than the cost per bit of disk storage. For this reason system
designers often design systems that use a hierarchical system
of memory and storage. However, even though a CPU may be
connected to one or more classes of memory (e.g. SDRAM,
NAND flash, disk storage), systems may use a dedicated
memory bus for the fastest memory technology and only one
class of memory may be connected to that memory bus. The
memory connected to a dedicated memory bus is called main
memory. The term main memory will be used, which in this
description may actually be comprised of multiple classes of
memory, to distinguish main memory from other memory
located on a different bus (e.g. USB key, etc.), or other
memory (e.g. storage, disk drive, etc.) that is not used as main
memory (memory that is not main memory may be secondary
storage, tertiary storage or offline storage, for example). The

10

15

20

25

30

35

40

45

50

55

60

65

14

term main memory is used, in this context, instead of the term
primary storage to avoid confusion with the general term
storage that is used in several other terms and many other
contexts.

In order to build a system with a large amount of memory,
systems may use a collection of different memory classes that
may behave as one large memory. In some embodiments, the
collection of different memory classes may involve a hierar-
chy that includes some or all of the following, each using
different classes of memory: main memory (or primary stor-
age), which may be closest to the CPU, followed by second-
ary storage, tertiary storage, and possibly offline storage. One
possible feature of this approach is that different buses are
sometimes used for the different classes of memory. Only the
fastest memory class can use the fast dedicated memory bus
and be used as main memory, for example. When the system
needs to access the slower memory classes, using a slower I/O
bus for example, this slower memory access can slow system
performance (and may do so drastically), which is very much
governed by memory bandwidth and speed.

There may be other reasons that system designers wish to
use multiple memory classes. For example, multiple memory
classes may be used to achieve the fastest possible access
speed for a small amount of fast, local (to the CPU) cache; to
achieve the highest bandwidth per pin (since pin packages
drive the cost of a system); or to achieve a certain overall
system price, performance, cost, power, etc.

For these and/or other reasons it may be advantageous for
a system designer to design a system that uses more than one
memory class for main memory on a memory bus. Of course,
it is contemplated that, in some embodiments, such use of
multiple memory classes may not necessarily exhibit one or
more of the aforementioned advantages and may even possi-
bly exhibit one or more of the aforementioned disadvantages.

FIG. 1A shows a multi-class memory apparatus 1A-100 for
receiving instructions via a single memory bus, in accordance
with one embodiment. As an option, the apparatus 1A-100
may be implemented in the context of any subsequent Figure
(s). Of course, however, the apparatus 1A-100 may be imple-
mented in the context of any desired environment.

As shown, a physical memory sub-system 1A-102 is pro-
vided.

Additionally, in various embodiments, the physical
memory sub-system 1A-102 may include a monolithic
memory circuit, a semiconductor die, a chip, a packaged
memory circuit, or any other type of tangible memory circuit.
In one embodiment, the physical memory sub-system
1A-102 may take the form of a dynamic random access
memory (DRAM) circuit. Such DRAM may take any form
including, but not limited to, synchronous DRAM (SDRAM),
double data rate synchronous DRAM (DDR SDRAM, DDR2
SDRAM, DDR3 SDRAM, etc.), graphics double data rate
DRAM (GDDR, GDDR2, GDDR3, etc.), quad data rate
DRAM (QDR DRAM), RAMBUS XDR DRAM (XDR
DRAM), fast page mode DRAM (FPM DRAM), video
DRAM (VDRAM), extended data out DRAM (EDO
DRAM), burst EDO RAM (BEDO DRAM), multibank
DRAM (MDRAM), synchronous graphics RAM (SGRAM),
and/or any other DRAM or similar memory technology.

As shown, the physical memory sub-system 1A-102
includes a first memory 1A-104 of a first memory class and a
second memory 1A-106 of a second memory class. In the
context of the present description, as set forth earlier, a
memory class may refer to any memory classification of a
memory technology. For example, in various embodiments,
the memory class may include, but is not limited to, a flash
memory class, a RAM memory class, an SSD memory class,

US 9,164,679 B2

15

a magnetic media class, and/or any other class of memory in
which a type of memory may be classified.

In the one embodiment, the first memory class may include
non-volatile memory (e.g. Fe(RAM, MRAM, and PRAM,
etc.), and the second memory class may include volatile
memory (e.g. SRAM, DRAM, T-RAM, Z-RAM, and
TTRAM, etc.). In another embodiment, one of the first
memory 1A-104 or the second memory 1A-106 may include
RAM (e.g. DRAM, SRAM, embedded RAM, etc.) and the
other one of the first memory 1A-104 or the second memory
1A-106 may include NAND flash (or other nonvolatile
memory, other memory, etc.). In another embodiment, one of
the first memory 1A-104 or the second memory 1A-106 may
include RAM (e.g. DRAM, SRAM, etc.) and the other one of
the first memory 1A-104 or the second memory 1A-106 may
include NOR flash (or other nonvolatile memory, other
memory, etc.). Of course, in various embodiments, any num-
ber(e.g.2,3,4,5,6,7,8,9, or more, etc.) of combinations of
memory classes may be utilized.

The second memory 1A-106 is communicatively coupled
to the first memory 1A-104. In the context of the present
description, being communicatively coupled refers to being
coupled in any way that functions to allow any type of signal
(e.g. a data signal, a control signal, a bus, a group of signals,
other electric signal, etc.) to be communicated between the
communicatively coupled items. In one embodiment, the sec-
ond memory 1A-106 may be communicatively coupled to the
first memory 1A-104 via direct contact (e.g. a direct connec-
tion, link, etc.) between the two memories. Of course, being
communicatively coupled may also refer to indirect connec-
tions, connections with intermediate connections therebe-
tween, etc. In another embodiment, the second memory
1A-106 may be communicatively coupled to the first memory
1A-104 via a bus. In yet another embodiment, the second
memory 1A-106 may be communicatively coupled to the first
memory 1A-104 utilizing a through-silicon via (TSV).

As another option, the communicative coupling may
include a connection via a buffer device (logic chip, buffer
chip, FPGA, programmable device, ASIC, etc.). In one
embodiment, the buffer device may be part of the physical
memory sub-system 1A-102. In another embodiment, the
buffer device may be separate from the physical memory
sub-system 1A-102.

In one embodiment, the first memory 1A-104 and the sec-
ond memory 1A-106 may be physically separate memories
that are communicatively coupled utilizing through-silicon
via technology. In another embodiment, the first memory
1A-104 and the second memory 1A-106 may be physically
separate memories that are communicatively coupled utiliz-
ing wire bonds. Of course, any type of coupling (e.g. electri-
cal, optical, etc.) may be implemented that functions to allow
the second memory 1A-106 to communicate with the first
memory 1A-104.

The apparatus 1A-100 is configured such that the first
memory 1A-104 and the second memory 1A-106 are capable
of receiving instructions via a single memory bus 1A-108.
The memory bus 1A-108 may include any type of memory
bus. Additionally, the memory bus may be associated with a
variety of protocols (e.g. memory protocols such as JEDEC
DDR2, JEDEC DDR3, JEDEC DDR4, SLDRAM, RDRAM,
LPDRAM, LPDDR, etc; I/O protocols such as PCI, PCI-E,
HyperTransport, InfiniBand, QPI, etc; networking protocols
such as Ethernet, TCP/IP, iSCSI, etc; storage protocols such
as NFS, SAMBA, SAS, SATA, FC, etc; and other protocols
(e.g. wireless, optical, etc.); etc.).

In one embodiment, the physical memory sub-system
1A-102 may include a three-dimensional integrated circuit.

30

40

45

65

16

In the context of the present description, a three-dimensional
integrated circuit refers to any integrated circuit comprised of
stacked wafers and/or dies (e.g. silicon wafers and/or dies,
etc.), which are interconnected vertically (e.g. stacked, com-
pounded, joined, integrated, etc.) and are capable of behaving
as a single device.

For example, in one embodiment, the physical memory
sub-system 1A-102 may include a three-dimensional inte-
grated circuit that is a wafer-on-wafer device. In this case, a
first wafer of the wafer-on-wafer device may include the first
memory 1A-104 of the first memory class, and a second wafer
of the wafer-on-wafer device may include the second
memory 1A-106 of the second memory class.

In the context of the present description, a wafer-on-wafer
device refers to any device including two or more semicon-
ductor wafers (or die, dice, or any portion or portions of a
wafer, etc.) that are communicatively coupled in a wafer-on-
wafer configuration. In one embodiment, the wafer-on-wafer
device may include a device that is constructed utilizing two
or more semiconductor wafers, which are aligned, bonded,
and possibly cut in to at least one three-dimensional inte-
grated circuit. In this case, vertical connections (e.g. TSVs,
etc.) may be built into the wafers before bonding, created in
the stack after bonding, or built by other means, etc.

In another embodiment, the physical memory sub-system
1A-102 may include a three-dimensional integrated circuit
that is a monolithic device. In the context of the present
description, a monolithic device refers to any device that
includes at least one layer built on a single semiconductor
wafer, communicatively coupled, and in the form of a three-
dimensional integrated circuit.

In another embodiment, the physical memory sub-system
1A-102 may include a three-dimensional integrated circuit
that is a die-on-wafer device. In the context of the present
description, a die-on-wafer device refers to any device includ-
ing one or more dies positioned on a wafer. In one embodi-
ment, the die-on-wafer device may be formed by dicing a first
wafer into singular dies, then aligning and bonding the dies
onto die sites of a second wafer.

In yet another embodiment, the physical memory sub-
system 1A-102 may include a three-dimensional integrated
circuit that is a die-on-die device. In the context of the present
description, a die-on-die device refers to a device including
two or more aligned dies in a die-on-die configuration. Addi-
tionally, in one embodiment, the physical memory sub-sys-
tem 1A-102 may include a three-dimensional package. For
example, the three-dimensional package may include a sys-
tem in package (SiP) or chip stack MCM.

Inoperation, the apparatus 1A-100 may be configured such
that the first memory 1A-104 and the second memory 1A-106
are capable of receiving instructions from a device 1A-110
via the single memory bus 1A-108. In one embodiment, the
device 1A-110 may include one or more components from the
following list (but not limited to the following list): a central
processing unit (CPU); a memory controller, a chipset, a
memory management unit (MMU); a virtual memory man-
ager (VMM); a page table, a table lookaside buffer (TLB);
one or more levels of cache (e.g. .1, L2, L3, etc.); a core unit;
an uncore unit (e.g. logic outside or excluding one or more
cores, etc.); etc.). In this case, the apparatus 1A-100 may be
configured such that the first memory 1A-104 and the second
memory 1A-106 are be capable of receiving instructions from
the CPU via the single memory bus 1A-108.

More illustrative information will now be set forth regard-
ing various optional architectures and features with which the
foregoing techniques discussed in the context of any of the
figure(s) may or may not be implemented, per the desires of

US 9,164,679 B2

17

the user. For instance, various optional examples and/or
options associated with the configuration/operation of the
physical memory sub-system 1A-102, the configuration/op-
eration of the first and second memories 1A-104 and 1A-106,
the configuration/operation of the memory bus 1A-108, and/
orother optional features have been and will be set forth in the
context of a variety of possible embodiments. It should be
strongly noted that such information is set forth for illustra-
tive purposes and should not be construed as limiting in any
manner. Any of such features may be optionally incorporated
with or without the inclusion of other features described.

FIG. 1B shows an exemplary system using main memory
with multiple memory classes, in accordance with another
embodiment. As an option, the exemplary system of FIG. 1B
may be implemented in the context of the architecture and
environment of FIG. 1A, or any subsequent Figure(s). Of
course, however, the exemplary system of FIG. 1B may be
implemented in the context of any desired environment.

In FIG. 1B, System 1B-100 comprises a CPU 1B-102
connected (e.g. coupled, etc.) to Memory 1B-106 using a
single Memory Bus 1B-104, and connected (e.g. coupled,
etc.) to Chipset 1B-120 using 1/0 Bus #1 1B-116. In FIG. 1B
Chipset 1B-120 is coupled to Disk 1B-110 using 1/O Bus #2
1B-108. In FIG. 1B, Memory 1B-106 comprises memory
class 1 1B-112 and memory class 2 1B-114. In FIG. 1B,
Memory 1B-106 may also be the main memory for System
1B-100. In FIG. 1B, memory class 1 1B-112 and memory
class 2 1B-114 may comprise different memory technologies.
In FIG. 1B, Disk 1B-110 may be secondary storage for Sys-
tem 1B-100.

In various different embodiments, with reference to FIG.
1B and other figures referenced below and other embodi-
ments described below, different system components (e.g.
system blocks, chips, packages, etc.) may be constructed (e.g.
physically, logically, arranged, etc.) in different ways; the
coupling (e.g. logical and/or physical connection via buses,
signals, wires, etc.) may be arranged in different ways; and
the architectures may be arranged in different ways (e.g.
operations performed in different ways, different split (e.g.
partitioning, sectioning, assignment, etc.) of functions
between hardware and/or software and/or firmware, etc.); but
these various differences may not affect the basic descriptions
(e.g. functions, operations, theory of operations, advantages,
etc.) provided below for each embodiment.

Where appropriate for each embodiment, examples of
alternative implementations, options, variations, etc. may be
described, for example, where new concepts, elements, etc.
may be introduced in an embodiment. However, these alter-
native implementations are not necessarily repeated for each
and every embodiment though application of alternative
implementations may be equally possible to multiple
embodiments. For example, it may be initially explained that
a memory component may be constructed from a package
that may contain one die or one or more stacked die. These
alternative memory component implementations may not be
repeatedly explained for each and every embodiment that
uses memory components. Therefore, the description of each
embodiment described here may optionally be viewed as
cumulative with respect to the various implementation
options, alternatives, other variations, etc. in that each new or
different etc. alternative implementation that may be applied
to other embodiments should be viewed as having being
described as such.

For example, in various embodiments, memory class 1 and
memory class 2 may each be physically constructed (e.g.
assembled, constructed, processed, manufactured, packaged,
etc.) in several ways: from one or more memory components;

10

15

20

25

30

35

40

45

50

55

60

65

18

from multi-chip packages; from stacked memory devices;
etc. In various embodiments, memory class 1 and memory
class 2 may be: integrated on the same die(s); packaged
separately or together in single die package(s) or multi-chip
package(s); stacked separately or together in multi-chip pack-
ages; stacked separately or together in multi-chip packages
with one or more other chip(s); as discrete memory compo-
nents; etc.

In different embodiments, Memory 1B-106 may be physi-
cally constructed (e.g. assembled, manufactured, packaged,
etc.) in many different ways: as DIMM(s); as component(s);
on a motherboard or other PCB; as part of the CPU or other
system component(s); etc.

In one embodiment, Memory 1B-106 may comprise more
than two memory classes, which may also be physically con-
structed in the various ways just described.

In one embodiment, there may be more than one CPU
1B-102. Additionally, in one embodiment, there may or may
not be a Disk 1B-110. In another embodiment, CPU 1B-102
may be connected directly to Disk 1B-110 (e.g. there may or
may not be a separate Chipset 1B-120, the function of Chipset
1B-120 may be integrated with the CPU 1B-102, etc.). In yet
another embodiment, one or more CPU(s) may connect (e.g.
couple, etc.) to more than one Memory 1B-106.

In various embodiments, Memory Bus 1B-104 may be: a
standard memory bus (e.g. DDR3, DDR4 etc.); other stan-
dard bus (e.g. QPI, ARM, ONF}j, etc.); a proprietary bus (e.g.
ARM, packet switched, parallel, multidrop, point-to-point,
serial, etc.); or even an I/O bus used for memory (e.g. PCI-E,
any variant of PCI-E, Light Peak, etc.).

Additionally, in different embodiments, I/O Bus #1
1B-116 that couples CPU 1B-102 to Chipset 1B-120 may be:
a standard I/O bus (e.g. PCI, PCI-E, ARM, Light Peak, USB,
etc.); a proprietary bus (e.g. ARM, packet switched, parallel,
multidrop, point-to-point, serial, etc.); or even a memory bus
used, modified, altered, re-purposed etc. for I/O (e.g. /O,
chipset coupling, North Bridge to South Bridge coupling,
etc.) purposes (e.g. low-power DDR, etc.). Of course, Chipset
1B-120 [or the functions (protocol conversion, etc.) of
Chipset 1B-120] may be integrated with (e.g. combined with,
part of, performed by, etc.) CPU 1B-102 etc.

Further, in various embodiments, I/O Bus #2 1B-108 that
couples Chipset 1B-120 with Disk 1B-110 may be: astandard
1/O or storage bus (e.g. SATA, SAS, PCIL, PCI-E, ARM, Light
Peak, USB, InfiniBand, etc.); a bus used to interface directly
with solid-state storage (e.g. NAND flash, SSD, etc.) such as
ONFi 1.0, ONFi 2.0, ONFi 3.0, OneNAND, etc; a proprietary
bus (e.g. ARM, packet switched, parallel, multidrop, point-
to-point, serial, etc.); a modified bus and/or bus protocol (e.g.
lightweight version of a storage protocol bus for use with
NAND flash, etc.); a networking bus and/or networking pro-
tocol (e.g. Ethernet, Internet, LAN, WAN, TCP/IP, iSCSI,
FCoE, etc.); a networked storage protocol (e.g. NAS, SAN,
SAMBA, CIFS, etc.); a wireless connection or coupling (e.g.
802.11, Bluetooth, ZigBee, LTE, etc.); a connection or cou-
pling to offline storage (e.g. cloud storage, Amazon EC3,
Mozy, etc.); a combination of buses and protocols (e.g. PCI-E
over Ethernet, etc.); or even a memory bus used, modified,
altered, re-purposed etc. for [/O purposes (e.g. low-power
DDR, DDR2, etc.).

In different embodiments, for systems similar to, based on,
or using that shown in FIG. 1B, any of the buses, protocols,
standards etc. operable for /O Bus #2 1B-108 may be used for
1/0 Bus #1 1B-116; and any of the buses, protocols, standards
etc. operable for [/O Bus #1 1B-116 may be used for I/O Bus
#2 1B-108.

US 9,164,679 B2

19

Further, in various embodiments, Memory Bus 1B-104
and/or 1/O Bus #1 1B-116 and/or /O Bus #2 1B-108 may
comprise: one or more buses connected in serial, one or more
buses connected in parallel, one or more buses connected in
combinations of serial and/or parallel; one or more buses in
series or parallel plus control signals; one or more different
buses in series plus control signals; and many other series/
parallel data/address/control/etc. bus combinations with vari-
ous series/parallel control signal combinations, etc.

In different embodiments, Memory Bus 1B-104 and/or [/O
Bus #1 1B-116 and/or /O Bus #2 1B-108 may comprise: one
or more buses using different protocols; different bus stan-
dards; different proprietary bus and/or protocol formats; com-
binations of these, etc.

In different embodiments, Memory Bus 1B-104 and/or [/O
Bus #1 1B-116 and/or /O Bus #2 1B-108 may comprise: a
point to point bus; a multidrop bus; a parallel bus; a serial bus;
a split transaction bus; one or more high-speed serial links;
combinations of these; etc.

For example, in one embodiment, Memory Bus 104 may be
a standard JEDEC (e.g. DDR2, DDR3, DDR4 etc.) memory
bus that comprises a parallel combination of: a data bus [e.g.
64-bits of data, 72-bits (e.g. data plus ECC, etc.), etc.], an
address bus, and control signals.

In another embodiment, Memory Bus 1B-104 may be a
standard JEDEC (e.g. DDR2, DDR3, DDR4 etc.) memory
bus or other memory bus that comprises a parallel combina-
tion of: a data bus [e.g. 64-bits of data, 72-bits (e.g. data plus
ECC, etc.), etc.], an address bus, and non-standard control
signals (e.g. either in addition to and/or instead of standard
control signals, etc.). In one embodiment, control signals may
time-multiplexed with existing standard control signals. In
another embodiment, control signals may re-use existing con-
trol signals, or may re-purpose existing control signals, etc.
Of course, in various embodiments, control signals may also
be viewed as data, address, etc. signals. Equally, in one
embodiment, address, data, etc. signals that may be part of a
bus may also be used as control signals etc. In addition, in one
embodiment, data signals may be used for control signals or
address signals etc. For example, in some embodiments, a
Bank Address signal (or signals) in a DDR protocol may be
viewed and/or used as a control signal as well as an address
signal. In other embodiments, one or more Chip Select sig-
nals in a DDR protocol may be used as one or more control
signals and adapted to be used as one or more address signals,
etc.

In another embodiment, I/O Bus #2 1B-108 may comprise
a wireless connection to offline storage via a combination
(e.g. series, series/parallel, parallel, combination of series and
parallel, etc.) of different: buses (e.g. I/O bus, storage bus,
etc); protocols (e.g. SATA, 802.11, etc.), adapters (wireless
controllers, storage controllers, network interface cards, etc.);
and different standards; and combinations of these, etc. For
example, in some embodiments /O Bus #2 1B-108 may be a
wireless 802.11 connection that may be coupled to (e.g.
chained with, in series with, connected to, etc.) a cell phone
connection that is in turn coupled (e.g. in series with, coupled
to, etc.) an Ethernet WAN connection etc. Of course, in vari-
ous embodiments, these connections may be in any order or
of any type.

In different embodiments, two or more of Memory Bus
1B-104 and/or I/O Bus #1 1B-116 and/or /O Bus #2 1B-108
may share [e.g. through time-multiplexing, through switch-
ing, through multiplexing (e.g. other than time, etc.), through
packet switching, etc.] some or all of the same connections
(e.g. wires, signals, control signals, data buses, address buses,
unidirectional signals, bidirectional signals, PCB traces,

10

15

20

25

30

35

40

45

50

55

60

65

20

package pins, socket pins, bus traces, connections, logical
connections, physical connections, electrical connections,
optical connections, etc.).

In different embodiments, one or more of the bus(es) that
comprise Memory Bus 104 and/or 1/0 Bus #1 1B-116 and/or
1/0 Bus #2 1B-108 may be wireless (e.g. LTE, 802.11, Wi-
Max, etc.). Thus, for example, in a system that includes a
mobile phone (e.g. a cellular phone, etc.), the mobile phone
may have some memory (e.g. solid-state memory, disk stor-
age, etc.) located remotely using a wireless connection (in
which case one system may be viewed as being the cell phone,
and another system as being the cell phone plus remote stor-
age).

In different embodiments, one or more of the bus(es) that
comprise Memory Bus 1B-104 and/or I/O Bus #1 1B-116
and/or /O Bus #2 1B-108 may be optical (e.g. Fibre Channel,
Light Peak, use optical components, etc.). Thus, for example,
in a system that comprises a server with a requirement for
large amounts of high-speed memory and having a large
power budget etc, the CPU may have memory connected via
optical cable (e.g. optical fiber, fibre channel, optical cou-
pling, etc.).

Of course, any technique of coupling (e.g. connecting logi-
cally and/or physically, using networks, using switches, using
MUX and deMUX functions, encoding multiple functions on
one bus, etc.) may be used for any (or all) of the buses and to
connect any (or all) of the components that may be coupled.

In different embodiments, the multiple memory classes in
Memory 1B-106 and Memory Bus 1B-104 may be connected
(e.g. coupled, etc.) to each other in several different ways
depending on the architecture of Memory 1B-106. Various
embodiments of the architecture of Memory 1B-106 and the
rest of the system are described in detail in exemplary
embodiments that follow. It should be noted now, however,
that in order to allow Memory 1B-106 to contain multiple
memory classes and connect (e.g. couple, etc.) to CPU
1B-102, other components (e.g. chips, passive components,
active components, etc.) may be part of Memory 1B-106 (or
otherwise connected (e.g. coupled, joined, integrated etc.)
with the multiple memory classes). Some other components,
their functions, and their interconnection(s), which, in vari-
ous embodiments, may be part of Memory 1B-106, are
described in detail below. It should be noted that these other
components, their functions, and their interconnection(s),
which may be part of Memory 1B-106, may not necessarily
be included or be shown in all figures.

FIG. 1C shows a virtual memory (VMy) in an example of
a computer system using a main memory with multiple
memory classes, in accordance with another embodiment. As
an option, the exemplary system of FIG. 1C may be imple-
mented in the context of the architecture and environment of
the previous Figure(s), or any subsequent Figure(s). Of
course, however, the exemplary system of FIG. 1C may be
implemented in the context of any desired environment.

A VMy may contain pages that may be either located (e.g.
resident, stored, etc) in main memory or in a page file (also
called a swap file). In FIG. 1C, a System 120 includes a CPU
122 coupled to Memory 126 using Memory Bus 124, and
coupled to Disk 130 using I/O Bus 128. The system of FIG.
1C is similar to FIG. 1B except that the Disk 130 is coupled
directly to CPU 122 in FIG. 1C.

In some high-end CPUs the function of chipset, South
Bridge, disk controller, etc. may be integrated, but in some
low-end systems (and consumer devices, for example), it may
not be integrated. It should be noted that in any of the embodi-
ments shown or described herein a chipset, South Bridge, disk
controller, I/O controller, SATA controller, ONFi controller,

US 9,164,679 B2

21

PCI-E controller, etc. may or may not be connected to the
CPU and/or may or may not be integrated with the CPU.

In FIG. 1C, memory class 1 148, memory class 2 150 and
memory class 3 134 located on Disk 130 may together form
VMy 132. InFIG. 1C, memory class 1 148 and memory class
2 150 may form the Main Memory 138. In FIG. 1C, memory
class 3 134 located on Disk 130 may contain the Page File. In
FIG. 1C, memory class 3 134 is not part of main memory (but
in other embodiments it may be). In FIG. 1C, the Data 136 of
Disk 130 may be used for data storage and is not part of VMy
132 (but in other embodiments it may be).

In one embodiment, memory class 1 148, memory class 2
150 and memory class 3 134 may be composed of (e.g.
logically comprise, etc.) multiple different classes of PM (e.g.
selected from: SRAM, SDRAM, NAND flash, embedded
DRAM, PCRAM, MRAM, combinations of these and/or
other memory types, etc.).

In FIG. 1B, all of Memory 106, which included multiple
memory classes, may be main memory for System 100. In
FIG. 1C regions of memory are labeled as memory, main
memory, and virtual memory. In FIG. 1C, the regions labeled
memory and main memory are the same; but this is not always
s0 in other embodiments and thus may stretch the precision of
the current terminology. Therefore, in FIG. 1C, system com-
ponents are labeled using a taxonomy that will help explain
embodiments that contain novel aspects for which current
terminology may be inadequate. In this case, elements of
CPU cache terminology are borrowed. Thus, in FIG. 1C, the
CPU Core 140 is shown as coupled to .1 Cache 142 and
(indirectly, hierarchically) to .2 Cache 144. The L1 Cache
and 1.2 Cache form a hierarchical cache with .1 Cache being
logically closest to the CPU. Using a similar style of labeling
in FIG. 1C for the VMy components, memory class 1 148 is
labeled as M1 Memory, memory class 2 150 as M2 Memory
and memory class 3 134 as M3 Memory (M1, M2, M3 may
generally be used, but it should be understood that this is a
short abbreviation, .1 Cache as just will be referred to L1).
M1 may also be referred to as primary memory, M2 as sec-
ondary memory, M3 as tertiary memory, etc.

The logical labels for CPU cache, L1 and L2 etc, say
nothing about the physical technology (e.g. DRAM, embed-
ded DRAM, SRAM, etc.) used to implement each CPU
cache. In the context of the present description, there is a need
to distinguish between memory technologies used for VMy
components M1, M2 etc. because the technology used affects
such things as system architecture, buses, protocols, packag-
ing, etc. Thus, following a similar style of labeling to the VMy
components in FIG. 1C, memory class 1 is labeled as C1,
memory class 2 as C2, and memory class 3 as C3. Note that
number assigned to memory class and the number assigned to
the logical position of the class are not necessarily the same.
Thus, both M1 and M2 may be built from memory class 1
(e.g. where memory class 1 might be SDRAM, etc.). For
example, a component of memory may be referred to as
M2.C1, which refers to M2 composed of memory class 1.

In FIG. 1C buses are also labeled as B1 (for Memory Bus)
and B2 (for /O Bus). Memory bus technologies and 1/O bus
technologies are deliberately not distinguished because the
embodiments described herein may blur, merge, and com-
bine, etc. those bus technologies (and to a great extent various
embodiments remove the distinctions between 1/O bus tech-
nologies and memory bus technologies). The concept of hier-
archy in bus technologies may be maintained. Thus, when itis
convenient, B1 and B2 may be used to point out that B1 may
be closer to the CPU than B2. It should be noted that in many
situations (e.g. architectures, implementations, embodi-
ments, etc.) it is sometimes hard to define what closer to the

10

15

20

25

30

35

40

45

50

55

60

65

22

CPU means with a bus technology. Nevertheless in FIG. 1C
for example B1 is regarded as being closer (e.g. lower latency
in this case) to the CPU than bus B1. Thus, B1 may be referred
to as the primary bus, B2 as the secondary bus, etc. The Page
File in FIG. 1C may be referred to as being memory
B2.M3.C3, e.g. tertiary memory M3 is constructed of
memory class 3 technology and is located on secondary bus
B2.

In general, though not necessarily always, M1 may be
logically closest to the CPU, M2 next, and so on. If there is a
situation in which, for example, M1 and M2 are not in that
logical position and there is possible confusion, this may be
pointed out. It may not be obvious why the distinction
between M1 and M2 might not be clear, thus, some embodi-
ments may be described where the distinction between M1
and M2 (or M2 and M3, M1 and M3, etc.) is not always clear.

In one embodiment, for example, memory may be com-
posed of M1 and M2 with two different technologies (e.g. C1
and C2), but both connected to the same bus (e.g. at the same
logical distance from the CPU); in that case it may be the case
that both technologies are M1 (and thus there may be M1. C1
and M1.C2 for example) or it may be the case that if one
technology has lower latency, for example C1, than that faster
technology is M1 because it is closer to the CPU in the sense
of lower latency and thus there is M1.C1 (with the other,
slower technology C2, being M2 and thus M2.C2).

In another embodiment, a technology C1 used for M1 may
be capable of operating in different modes and is used in a
memory system together with technology C2 used as M2.
Suppose, for example, mode 1 of C1 is faster than C2, but
mode 2 of C1 is slower than M2. In that case, the roles of C1
and C2 used as M1 and M2, for example, may be reversed in
different modes of operation of C1. In this case, where the
fastest memory is defined as being closer to the CPU, termi-
nology may be used to express that memory is composed of
M1.C1 and M2.C2 when C1 is in mode 1 and memory is
composed of M1.C2 and M2.C1 when C1 is in mode 2.

InFIG. 1C, that portion of Disk 130 and Secondary Storage
146 that is used for Data 136 as labeled as D1. This notation
may be helpful in certain embodiments where the distinction
between, for example, page file regions of a disk (or memory)
and data regions of a disk (or memory) needs to be clear.
Although not labeled in FIG. 3, if the data region uses
memory class 3 (disk technology in FIG. 1C), the data region
of the disk may be labeled as B2.C3.D1 in FIG. 1C for
example (and the page file, labeled memory class 3 134 in
FIG. 1C may be more accurately referred to as B2.C3.M3).

In some embodiments, different memory technologies
(e.g. solid-state, RAM, DRAM, SDRAM, SRAM, NAND
flash, MRAM, etc.) as well as storage technologies (e.g. disk,
SSD, etc.) all have individual and different physical, logical,
electrical and other characteristics, and thus each technology
may, for example, have its own interface signaling scheme,
protocol, etc. For example, DRAM memory systems may use
extremely fast (e.g. 1 GHz clock frequency or higher, etc.)
and reliable (e.g. ECC protected, parity protected, etc.)
memory bus protocols that may be industry standards: e.g.
JEDEC standard DDR2, DDR3, DDRA4, protocols etc. Disks
(e.g. mechanical, SSD, etc.) may use fast, reliable and easily
expandable storage device protocols that may be industry
standards: e.g. ANSIVINCITS T10, T11 and T13 standards
such as SCSI, SATA, SAS protocols, etc. and may be attached
(e.g. coupled, connected, etc. via a controller, storage con-
troller, adapter, host-bus adapter, HBA etc.) to I/O bus proto-
cols that may also be industry standards: e.g. PCI-SIG stan-
dards such as PCI-Express, PCI, etc.

US 9,164,679 B2

23

The following definitions and the following explanation of
the operation of a VMy are useful in the detailed description
of different and various embodiments of the memory system
below.

To create the illusion of a large memory using a small
number of expensive memory components together with
other cheaper disk components a system may employ VMy.
The information (e.g. data, code, etc.) stored in memory is a
memory image. The system (e.g. OS, CPU, combination of
the OS and CPU, etc.) may divide (e.g. partition, split, etc.) a
memory image into pages (or virtual pages), and a page of a
memory image can at any moment in time exist in (fast but
expensive) main memory or on (slower but much cheaper)
secondary storage (e.g. disk, SSD, NAND flash, etc.), or both
(e.g. main memory and secondary storage). A page may be a
continuous region of VMy in length (a standard length or size
is 4,096 byte, 4 kB, the page size). A page may be page-
aligned, that is the region (e.g. portion, etc.) of a page starts at
a virtual address (VA) evenly (e.g. completely, exactly, etc.)
divisible by the page size. Thus, for example, a 32-bit VA may
be divided into a 20-bit page number and a 12-bit page offset
(or just offset).

System 120 may contain an operating system (OS). For an
OS that uses VMY, every process may work with a memory
image that may appear to use large and contiguous sections of
PM. The VMy may actually be divided between different
parts of PM, or may be stored as one or more pages on a
secondary storage device (e.g. a disk). When a process
requests access to a memory image, the OS may map (or
translate) the VA provided by the process to the physical
address (PA, or real address). The OS may store the map of VA
to PA in a page table.

A memory management unit (MMU) in the CPU may
manage memory and may contain a cache of recently used VA
to PA maps from the page table. This cache may be the
translation lookaside buffer (TL.B). When a VA in VMy needs
to be translated to a PA, the TLB may be searched (a TLB
lookup) for the VA. If the VA is found (a TLB hit), the
corresponding PA may be returned and memory access may
continue. If the VA is not found (a TLB miss), a handler may
look up the address map in the page table to see whether the
map exists by performing page table lookup or page walk. If
the map exists in the page table, the map may be written to the
TLB. The instruction that caused the TL.B miss may then be
restarted. The subsequent VA to PA translation may result in
a TLB hit, and the memory access may continue.

A page table lookup may fail (a page miss) for two reasons.
The first reason for a page miss is if there is no map available
for the VA, and the memory access to that VA may thus be
invalid (e.g. illegal, erroneous, etc.). An invalid access should
be arare event and may occur because of a programming error
etc, and the operating system may then send a segmentation
fault to the process, and this may be a fatal event. The second
and normal reason for a page miss is if the requested page is
not resident (e.g. present, stored, etc.) in PM. Such a page
miss may happen when the requested page (e.g. page 1) has
been moved out of PM and written to the page file, e.g. disk,
normally in order to make room for another page (e.g. page 2).
The usual term for this process is swapping (hence the term
swap file) and it may be said that the pages (e.g. page 1 and
page 2) have been swapped. When this page miss happens the
requested page needs to be read (often referred to as fetched)
from the page file on disk and written back into PM. This
action is referred to a page being swapped out (from main
memory to disk and the page file) and/or swapped in (from the
disk and page file to main memory).

20

25

30

40

45

24

There are two situations to consider on a page miss: the PM
is not full and PM full. When the PM is not full, the requested
page may be fetched from the page file, written back into PM,
the page table and TLB may be updated, and the instruction
may be restarted. When the PM is full, one or more pages in
the PM may be swapped out to make room for the requested
page. A page replacement algorithm may then choose the
page(s) to swap out (or evict) to the page file. These evicted
page(s) may then be written to the page file. The page table
may then be updated to mark the evicted page(s) that were
previously in PM as now in the page file. The requested page
may then be fetched from the page file and written to the PM.
The page table and TLLB may then be updated to mark the
requested page that was in the page file as now in the PM. The
TLB may then be updated by removing reference(s) to the
evicted page(s). The instruction may then be restarted.

FIG. 2 shows a page write in a system using main memory
with multiple memory classes, in accordance with another
embodiment. As an option, the exemplary system of FIG. 2
may be implemented in the context of the architecture and
environment of the previous Figure(s), or any subsequent
Figure(s). Of course, however, the exemplary system of FIG.
2 may be implemented in the context of any desired environ-
ment.

In FIG. 2, a System 200 includes a CPU 202 coupled to
Memory 226 using Memory Bus 204, and coupled to Disk
210 using 1/O Bus 212. In FIG. 2, memory class 1 206 (M1),
memory class 2 208 (M2) and memory class 3 234 (M3)
located on Disk 210 together form VMy 232. In FIG. 2,
memory class 1 206 and memory class 2 208 form the Main
Memory 238. In FIG. 2, memory class 3 234 located on Disk
210 contains the page file. In FIG. 2, memory class 3 234 is
not part of Main Memory 238 (but in other embodiments it
may be).

In FIG. 2, a page of memory (for example Page X 214) is
located in memory class 1 206, but is not immediately needed
by the CPU 202. In some embodiments memory class 1 206
may be small and fast but expensive memory (e.g. SDRAM,
SRAM, etc.). In this case, Page X may be fetched from
memory class 1 206 and copied to a location on larger, slower
but cheaper secondary storage (e.g. Page X 216). In order to
complete the transfer of Page X from memory class 1 206 to
Disk 210, the data comprising Page X may be copied (e.g.
transferred, moved. etc.) as Copy 1 220 over Memory Bus
204, through CPU 202, through 1/O Bus 212, to the location
of' Page X 216 on Disk 210. This process of Copy 1 220 may,
in some embodiments, free up precious resources in memory
class 1 206. However, one possible result is that the process of
Copy 1 220 may consume time and may also consume various
other resources including bandwidth (e.g. time, delay, etc.) on
Memory Bus 204, bandwidth (e.g. time, delay, etc.) on I/O
Bus 208, bandwidth (e.g. time, delay, etc.) and write latency
(e.g. delay, cycles, etc.) of Disk 210, and possibly also
resources (e.g. cycles, etc.) from the CPU 202. In addition
another possible result may be that power is consumed in all
these operations.

In different embodiments, the Copy 1 220 may be part of a
page swap, a page move, a write to disk, etc. If Copy 1 220 is
part of a page swap then the next operation may be to copy
PageY 236 to memory class 1 206 in order to replace Page X
214.

In some embodiments, the system designer may accept the
trade-offs just described and design a system having the
memory architecture shown in FIG. 2. In other embodiments
that are described below, some of these trade-offs just
described may be changed, improved or otherwise altered etc.
by changing the architecture of the memory system.

US 9,164,679 B2

25

In other embodiments, based on that shown in FIG. 2
and/or based on other similar embodiments described else-
where, Disk 210 may be: remote storage using e.g. SAN;
NAS; using a network such as Ethernet etc. and a protocol
such as iSCSI, FCoE, SAMBA, CIFS, PCI-E over Ethernet,
InfiniBand, USB over Ethernet, etc; cloud storage using
wired or wireless connection(s); RAID storage; JBOD; SSD;
combinations of these, etc. and where the storage may be
disk(s), SSD, NAND flash, SDRAM, RAID system(s), com-
binations of these, etc.

FIG. 3 shows a page read in a system using main memory
with multiple memory classes, in accordance with another
embodiment. As an option, the exemplary system of FIG. 3
may be implemented in the context of the architecture and
environment of the previous Figure(s), or any subsequent
Figure(s). Of course, however, the exemplary system of FIG.
3 may be implemented in the context of any desired environ-
ment.

In FIG. 3, a System 300 includes a CPU 302 coupled to
Memory 326 using Memory Bus 304, and coupled to Disk
310 using 1/0 Bus 312. In FIG. 3, memory class 1 306 (M1),
memory class 2 308 (M2) and memory class 3 334 (M3)
located on Disk 310 together form VMy 332. In FIG. 3,
memory class 1 306 and memory class 2 306 form the Main
Memory 338. In FIG. 3, memory class 3 334 located on Disk
310 contains the page file. In FIG. 3, memory class 3 334 is
not part of Main Memory 338 (but in other embodiments it
may be).

In FIG. 3, a page of memory (e.g. Page Y 318, etc.) is
located on Disk 310, but is immediately needed by the CPU
302, In some embodiments, memory class 1 306 may be small
and fast but expensive memory (e.g. SDRAM, SRAM, etc.).
In this case, Page Y located on larger, slower but cheaper
secondary storage (e.g. Page Y 336) may be fetched from and
copied to a location in memory class 1 306. In order to
complete the transfer of Page Y from Disk 310 to memory
class 1 306, the data comprising PageY is copied (e.g. trans-
ferred, moved. etc.) as Copy 2 320 through I/O Bus 212,
through CPU 302, over Memory Bus 304, to the location of
Page X 318 to memory class 1 306. This process of Copy 2
320 may, in some embodiments, allow for providing CPU 302
faster access to Page Y. However, the process of Copy 2 320
may, in some embodiments, allow for consuming time and
may also consume various other resources including band-
width (e.g. time, delay, etc.) on Memory Bus 304, bandwidth
(e.g. time, delay, etc.) on /O Bus 308, bandwidth (e.g. time,
delay, etc.) and write latency (e.g. delay, cycles, etc.) of Disk
310, and possibly also resources (e.g. cycles, etc.) from the
CPU 302. In addition, power is consumed in all these opera-
tions.

The operations in the systems of FIG. 2 and FIG. 3 are
described separately above, but it should be noted that that if
the operations (e.g. steps, actions, etc.) shown in FIG. 2 are
performed (e.g. Copy 1 220, copying Page X from main
memory to the swap file, etc.) followed by the operations
shown in FIG. 3 (e.g. Copy 2 320, copying Page Y from the
swap file to main memory, etc.) in a system Page X (shown as
Page X 316 in FIG. 3) and Page Y are swapped in main
memory; with the final result being as shown in FIG. 3. These
page swapping operations are a sequence of operations that
may be performed via a virtual memory manager (VMM) or
in virtual memory management. The time, power and effi-
ciency of these VMM operations, including page swapping,
are an element of system design and architecture.

In some embodiments, memory class 1 206 in FIG. 2 and
memory class 1 306 in FIG. 3 may be small and fast but
expensive memory (e.g. SDRAM, SRAM, etc.) as described

10

15

20

25

30

35

40

45

50

55

60

65

26

above. In certain embodiments, memory class 1 206 in FIG. 2
and memory class 1 306 in FIG. 3 may be faster than memory
class 2 208 in FIG. 2 and memory class 2 308 in FIG. 3. In
these embodiments, the page eviction and page fetch are from
(for eviction) and to (for fetch) the faster part of main
memory.

In other embodiments, it may be desirous (e.g. for reasons
of cost, power, performance, etc.) for memory class 1 206 in
FIG. 2 and memory class 1 306 in FIG. 3 to be slower than
memory class 2 208 in FIG. 2 and memory class 2 308 in F1G.
3. In these embodiments the page eviction and page fetch are
from and to the slower part of main memory.

Of course, there may be possible trade-offs in the design of
systems similar to those shown in FIG. 2 and FIG. 3 (e.g.
portable consumer devices, servers, laptops, cell phones, tab-
let PCs, etc.). For example, in some embodiments, it may be
desirous to perform swapping to and from a memory class
that has one or more of the following properties relative to
other memory classes in main memory: consumes less power
(e.g. LPDDR rather than DDR, low-voltage memory, etc.); is
more reliable (e.g. uses ECC protection, LDPC protection,
parity protection, etc.); is removable (e.g. USB key, Ready-
Boost, etc.); can be remotely connected more easily (e.g.
SAN, NAS, etc.); is more compact (e.g. embedded DRAM
rather than SRAM, flash rather than SRAM, etc.); is cheaper
(e.g. flash rather than SDRAM, disk rather than SDRAM,
etc.); can be more easily integrated with other component(s)
(e.g. uses the same protocol, uses compatible process tech-
nology, etc.); has a more suitable protocol (e.g. ONFi, DDR,
etc.); is easier to test (e.g. standard DDR SDRAM with built-
in test (BIST, etc.), etc.); is faster (e.g. SRAM rather than
flash, etc.); has higher bandwidth (e.g. DDR3 rather than
DDR2, higher bus widths, etc.); can be stacked more easily
(e.g. appropriate relative die sizes for stacking (for TSV
stacking, wirebond, etc.), using TSVs with compatible pro-
cess technologies, etc; can be packaged more easily (e.g.
NAND flash with relatively low clock speeds may be wireb-
onded, etc.); can be cooled more easily (e.g. lower power
NAND flash, low-power SDRAM, LPDDR, etc.); and/or any
combinations of these; etc.

In other embodiments, the decision to swap pages to/from
a certain memory class may be changed (e.g. by configura-
tion; by the system, CPU, OS, etc; under program control;
etc.). For example, a system may have main memory com-
prising memory class 1 and memory class 2 and suppose
memory class 1 is faster than memory class 2, but memory
class 1 consumes more power than memory class 2. In one
embodiment, the system may have a maximum performance
mode for which the system (e.g. CPU, OS, etc.) may use
memory class 1 to swap to/from. The system may then have a
maximum battery life mode in which the system may use
memory class 2 to swap to/from.

In FIG. 2 the process of page eviction in a VMy system is
described, but the process of page eviction may be similar to
a data write from main memory to disk. In FIG. 3 the process
of'page fetch in a VMy system is described, but the process of
page fetch may be similar to a data read from disk to main
memory. Thus, the same issues, trade-offs, alternative
embodiments, system architectures etc. that was described
with regard to the systems in FIG. 2 and FIG. 3 (and systems
similar to those systems) are relevant and may be used in
systems that do not use a VMy architecture, but that may still
benefit from the use of main memory with multiple memory
classes. Thus, the descriptions and concepts may be broad-
ened and therefore implement a variety of embodiments
described to the physical memory sub-system general [/O and
data movement rather than just the page operations involved

US 9,164,679 B2

27

in VMM. Of course, general /O and data movement may
involve copying, moving, shifting, replicating etc. different
sizes of data other than a page.

In some embodiments, the system (e.g. OS, CPU, etc.) may
track (e.g. with modified page table(s), etc.) which pages are
located in which memory class in main memory. Descriptions
of' various embodiments that follow describe how the system
(e.g. OS, CPU, etc.) may communicate (e.g. signal, com-
mand, send control information, receive status, etc.) with the
memory to, for example, transfer (e.g. copy, move, DMA,
etc.) data (e.g. pages, cache lines, blocks, contiguous or non-
contiguous data structures, words, bytes, any portion of
memory or storage, etc.) between multiple memory classes.

In other embodiments, the main memory system may
autonomously (e.g. without knowledge of the CPU, OS etc.)
decide which pages are located in which memory class in
main memory. For example, data may be moved from one
memory class to another due to constraints such as: power,
performance, reliability (e.g. NAND flash wear-out, etc.),
available memory space, etc. Such an embodiment may be
opted for because (since the CPU and/or OS are oblivious that
anything has changed) an implementation may require mini-
mal changes to CPU and/or OS, etc. For example, suppose a
system has main memory comprising memory class 1 and
memory class 2. Suppose that a page (or any other form,
portion, group, etc. of data; a page will be used for simplicity
of explanation here and subsequently) is moved from
memory class 1 to memory class 2. There may be a need for
some way to hide this page move from the CPU. One reason
that the use of a VMy system in FIG. 1B and the process of
page swapping in FIG. 2 and FIG. 3 is described is that in
some embodiments, the memory management systems (e.g.
VMM in CPU, MMU in CPU, software in OS, combinations
of these possibly with new hardware and/or software, etc.)
may be used to allow the main memory to hide (either par-
tially or completely from the CPU and/or OS) the fact that
there are multiple memory classes present.

In some embodiments, the system designer may accept the
trade-offs just described and design a system with (or similar
to) the architecture shown in FIG. 2 and in FIG. 3, that may
include some form of secondary storage for paging. In other
embodiments, the slower speeds of disk 1/O and secondary
storage may lead to the functions of disk and secondary
storage being moved to one or more of the memory classes in
main memory. Such optional embodiments are described in
more detail below.

In various embodiments, the page swap functions and
memory reads/writes may still involve some form of second-
ary storage but be more complex than that described already.
For example, page eviction (to make room for another page)
may occur using a copy from one memory class in main
memory (the eviction class) to another memory class (but still
in main memory rather than secondary storage), possibly
followed by a copy to secondary storage (e.g. disk, etc.). In
another embodiment, page fetch may be a copy from second-
ary storage to one memory class in main memory (the fetch
class, not necessarily the same as the eviction class) and then
another copy to a second memory class in main memory.

In different embodiments, page files (or any other data,
page files are used for simplicity of explanation) may exist
just in secondary storage, just in main memory, in more than
one memory class in main memory, or using combinations of
these approaches (and such combinations may change in
time). Copies of page files (or any other data, page files are
used for simplicity of explanation) may be kept in various
memory classes in main memory under configuration and/or

10

15

20

25

30

35

40

45

50

55

60

65

28

system control, etc. Further and more detailed explanations of
such optional embodiments are described below.

In different embodiments, the fetch class, the eviction
class, the class (or classes) assigned to each of the fetch class
and the eviction class may be changed in various ways:
dynamically, at start up, at boot time, via configuration, etc.

Of course, as already discussed, a page fetch operation may
be analogous to a disk (or other [/O) read; and a page eviction
may be analogous to a disk (or other 1/O) write; thus the
preceding description of alternative architectures and logical
structures for a system that does use VMy (with main memory
using multiple memory classes) and page swapping applies
equally to systems that do not use VMy but still perform disk
(or other) 1/O.

The systems in FIG. 2 and FIG. 3 have been described in
terms of a VMy system, but the concept of swapping regions
of the memory image in and out of main memory is a more
general one. For example, machines without dedicated VMy
support in the CPU may use overlays in order to expand main
memory, in still other possible embodiments.

In general, using overlays (or overlaying) may involve
replacement of a block (e.g. region, portion, page, etc.) of
information stored in a memory image (e.g. instructions,
code, data, etc.) with a different block. The term blocks is
used for overlays to avoid confusion with pages for a VMy,
but they may be viewed as similar [e.g. though page size(s)
and block size(s), etc. may be different; there may be variable
overlay block sizes; software and hardware used to manipu-
late pages and blocks may be different, etc.]. Overlaying
blocks allows programs to be larger than the CPU main
memory. Systems such as embedded systems, cell phones,
etc. may use overlays because of the very limited size of PM
(e.g. due to cost, space, etc.). Other factors that may make the
use of overlays in systems such as those shown in FIG. 2 and
FIG. 3 more attractive than VMy may include one or more of
the following: the PM may be integrated (or packaged with,
die stacked, etc.) a system-on-chip (e.g. SoC, CPU, FPGA,
etc.) further limiting the PM size; any CPU if used may not
have a VMy MMU; any OS if used may be a real-time OS
(RTOS) and the swapping of overlay blocks may be more
deterministic than page swapping in VMy; any OS used may
not support VMy; etc. For the same reasons that one may opt
for use of main memory with multiple memory classes for a
VMy system, one may also opt to use main memory with
multiple memory classes for an overlay system (or any other
system that may require more main memory than PM avail-
able). Thus, even though the use of VMy may be described in
a particular embodiment, any embodiment may equally use
overlays or other techniques.

In some embodiments, one may opt to use overlays even if
the system supports (e.g. is capable of using, uses, etc.) VMy.
For example, in some systems using VMy, overlays may be
used for some components (e.g. software, programs, code,
data, database, bit files, other information, etc.) that may then
be loaded as needed. For example, overlays may be kept in
memory class 2 and swapped in and out of memory class 1 as
needed.

Of the time-consuming (e.g. high delay, high latency, etc.)
operations mentioned above, the most time-consuming
(highest latency) operations may be those operations involv-
ing access to the disk(s) (e.g. with rotating magnetic media,
etc.). Disk access times (in 2011) may be 10’s of milliseconds
(ms, 10°-3 seconds) or 10 million times slower compared to
the access times for DRAM of a few nanoseconds (ns, 10"-9
seconds) or faster. Though caching may be employed in sys-
tems where faster access times are required there is a perfor-
mance penalty for using disk (or other secondary storage

US 9,164,679 B2

29

separate from main memory, etc.) in a system with VMy,
overlays, etc. Thus, in mobile consumer devices for example,
one embodiment may eliminate the use of a disk (or other
secondary storage separate from main memory, etc.) for pag-
ing, etc. A potential replacement technology for disk is
NAND flash. A simple approach would be to replace the
rotating disk used as secondary storage on the I[/O bus with a
faster SSD based on NAND flash technology. For reasons
explained in the embodiments described below, one may opt
to integrate technologies such as NAND flash (or other simi-
lar memory types, etc.) into main memory. The next several
embodiments describe how the integration of different
memory technologies into main memory may be achieved.

FIG. 4 shows copy operations corresponding to memory
reads in a system using main memory with multiple memory
classes, in accordance with another embodiment. As an
option, the exemplary system of FIG. 4 may be implemented
in the context of the architecture and environment of the
previous Figure(s), or any subsequent Figure(s). Of course,
however, the exemplary system of FIG. 4 may be imple-
mented in the context of any desired environment.

In explaining the copy operations corresponding to
memory reads in the context of FIG. 4, optional features that
may be achieved using multiple classes in main memory will
be described. In FIG. 4, a System 400 includes a CPU 402
coupled to Memory 426 using Bus #1 404, coupled to Storage
#1 410 using Bus #2 412, and coupled to Storage #2 430 using
Bus #3 432. In FIG. 4 Storage #1 contains Data #1 442. In
FIG. 4 Storage #2 430 contains Data #2 440. In FIG. 4,
memory class 1 406, memory class 2 408, with memory class
3 434 and memory class 4 436 (both located on Storage #1
410) together form VMy 432. In FIG. 4, memory class 1 406
and memory class 2 408 form the Main Memory 438. In FIG.
4, memory class 3 434 forms a cache for Storage #1 410 and
Disk #1 444. In FIG. 4, memory class 4 436 located on
Storage #1 410 contains the page file. In FIG. 4, memory class
3 434 and memory class 4 436 are not part of Main Memory
438 (but in other embodiments they may be).

FIG. 4 is intended to be a representative example of a
system while still showing various features that may be
present in multiple embodiments. Thus, for example, not all
systems may have Storage #2 430, but it has been included in
the system architecture diagram of FIG. 4 to show, as just one
example, that some systems may be coupled to a remote
storage via a wireless connection (e.g. such that at least part of
Bus #3 432 may be a wireless connection in some embodi-
ments, etc.). As another example, Bus #2 412 (e.g. part, or all,
etc.) may be a remote connection (e.g. wireless or other
network, etc.) allowing paging to be performed to/from
remote storage. As another example, not all systems may have
memory class 3 434 that may act as a cache for Storage #1
410. As another example, Storage #1 410 may not be a rotat-
ing disk but may be a solid-state disk (SSD) and possibly
integrated with one or more other solid-state memory com-
ponents shown in FIG. 4 that may be part of Memory 426.

InFIG. 4, various alternative copy operations (Copy 3 453,
Copy 4 454, Copy 5 455, Copy 6 456, Copy 7 457, Copy 8
458, Copy 9 459) have been diagrammed. These copy opera-
tions perform on various pages (Page 00 480, Page 01 481,
Page 02 482, Page 03 483, Page 04 484, Page 05 485, Page 06
486).

It should be noted that the term copy should be broadly
construed in that each copy may, in various embodiments, be:
(a) a true copy (e.g. element 1 in location 1 before a copy
operation and two elements after a copy operation: element 1
inlocation 1 and element 2 in location 2, with element 2 being
an exact copy of element 1); (b) a move (e.g. element 1 in

10

15

20

25

30

35

40

45

50

55

60

65

30

location 1 before the copy operation, and element 1 in loca-
tion 2 after the copy operation); (c) copy or move using
pointers or other indirection; (d) copy with re-location (ele-
ment 1 in location 1 before the copy operation and two ele-
ments after the copy operation: element 1 in location 2 and
element 2 in location 3, with element 2 being an exact copy of
element 1, but locations 1, 2, and 3 being different); (e)
combinations of these and/or other move and/or copy opera-
tions, etc.

In some embodiments, a copy of types (a)-(e) may result,
for example, from software (or other algorithm, etc.) involved
that may not be described in each and every embodiment and
that, in general, may or may not be implemented in any
particular embodiment.

The copy operations shown in FIG. 4 will be now
described.

Copy 3 453 shows a copy from memory class 1 to memory
class 3. This copy may be part of a page eviction or a write, for
example. Copy 3 uses Bus #1 and Bus #2 as well as CPU
resources. The lines of Copy 3 in FIG. 4 have been drawn as
straight lines next to (parallel with) the bus(es) that is/are
being used during the copy, but the lines have not necessarily
been drawn representing the other copies in a similar fashion.

Copy 4 454 may follow Copy 3. For example, suppose that
memory class 3 may act as a cache for Storage #1 410 then
Copy 4 shows a next action following Copy 3. In the case of
Copy 4 the write completes to memory class 4. Supposing
that memory class 4 436 located on Storage #1 410 contains
the page file then Copy 3 and Copy 4 together represent a page
eviction.

Copy 5 455 may be an alternative to Copy 3. For various
reasons, one may opt to perform Copy 5 instead of Copy 3.
For example, Copy 3 may take longer than the time currently
available; Copy 3 may consume CPU resources that are not
currently available; Copy 3 may require too much power at
the present time, etc. Copy 5 copies from memory class 1 to
memory class 2 within Main Memory 438. For example, in
the case of page eviction, a page is evicted to memory class 2
instead of to the page file on Storage #1 410. In some embodi-
ments, two page files may be maintained, one on Storage #1
410 and one in memory class 2 (for example memory class 2
may contain more frequently used pages, etc.). In other
embodiments, Copy 5 may be treated as a temporary page
eviction and complete the page eviction (or data write in the
case of a data write) to Storage #1 410 at a later time. Note
that, in contrast to Copy 3, and depending on how the Main
Memory is constructed, Copy 5 may not require Bus #1 or
CPU resources (or may at least greatly decrease demands on
these resources) and alternative embodiments and architec-
tures will be described for Main Memory that have such
resource-saving features below. These features may accom-
pany using main memory with multiple memory classes. In
different embodiments, the page eviction (or data write) may
be completed in different ways, two examples of which are
described next.

Copy 6 456 shows the first part of the case (e.g. represents
anaction performed) in which, for example, a temporary page
eviction is reversed (or page eviction completed, etc.). Sup-
pose, for example, that Copy 5 has been performed (and Copy
5 is treated as a temporary eviction) and following Copy 5
(possibly after a controlled delay, etc.), it is desired to com-
plete a page eviction (or write in the case of a data write) to
Storage #1 410. Depending on how the system is capable of
writing to Storage #1 410, Copy 6 may be performed next that
may reverse the page eviction from memory class 1. In some
cases, actions such as Copy 5 followed by Copy 6 may not
necessarily not copy a page back to its original (source)

US 9,164,679 B2

31

memory location but to a newly released and different (target)
location, as shown in FIG. 4 (and thus the temporary eviction
may not be necessarily exactly reversed, even though it may
help to think of the action as a reversal). In the case that the
system always writes pages to memory class 3 (and thus
Storage #1 410) from memory class 1 (e.g. due to main
memory bus architecture, DMA architecture, etc.), Copy 6
should be performed before a copy such as Copy 7 is per-
formed to complete the page eviction (similarly for a data
write). Note that Copy 6, as was the case for Copy 5, may, in
certain embodiments, not require Bus #1 and CPU resources.

Copy 7 457 shows the second part of the case (e.g. repre-
sents an action performed) in which, for example, a tempo-
rary page eviction is reversed (or page eviction completed,
etc.). Copy 7 completes a page eviction (or data write) using
a copy of an evicted page from memory class 1 to memory
Class 3 (and thus to Storage #1 410). In other embodiments,
copies directly from memory class 2 to memory class 3 (and
thus to Storage #1 410) may be performed and in that case
Copy 6 and Copy 7 may be combined into one operation and
avoid the need to request or consume etc. any space in
memory class 1.

Copy 8 458 is the equivalent to Copy 4 but corresponds to
(or performs) a data write to Storage #1 410 rather than a page
eviction. In the case of the page eviction, the write (Copy 4)
completes to memory class 4 (which is part of VMy 432 and
contains the page file) on Storage #1 410. In the case of a data
write (Copy 8) the write completes to Storage #1 410 in a
region that is outside the VMy.

Copy 9 459 shows the copy of a page to Storage #2 430.
Copy 9 may correspond to a data write since in FIG. 4 Storage
#2 430 is not part of the VMy (though in other embodiments
it may be). In the same way that Copy 5 etc. was used to delay,
postpone etc. Copy 3 (applied to a page eviction) the same
technique(s) may be used to delay a data write. Thus, for
example, instead of performing Copy 9 immediately, the fol-
lowing actions (e.g. under program control, direction of the
CPU, direction of the OS, direction of the main memory, in a
configurable or dynamic fashion, etc.) may be performed:
first perform a Copy 5, second perform a Copy 6, third per-
form a Copy 9.

Such a delay (or other similar write manipulation, etc.)
might be opted for in many situations. For example, in the
case described above where Storage #2 430 is remote, possi-
bly on a wireless connection that may be unreliable (e.g.
intermittent, etc.) or consumes more power than presently
available etc, one may, in some embodiments, opt to tempo-
rarily store writes that may then be completed at a later time
etc.

In one embodiment, such delayed data writes may be used
with techniques such as performing the writes to log files etc.
to allow interruptions of connectivity, avoid data corruption,
etc.

In another embodiment, data writes may be aggregated
(e.g. multiple writes combined into a single write, etc.). Write
aggregation may exhibit various optional features including
but not limited to: improved bandwidth; reduced power;
reduced wear in NAND flash, etc.

In another embodiment, data writes may be combined (e.g.
multiple writes to the same location are collapsed together,
resulting in many fewer writes). Write combining offers sev-
eral possible features including but not limited to: reduced
NAND flash write amplification (e.g. the tendency of a single
data write to an SSD, which may use NAND flash for
example, to generate multiple writes internally to the SSD
leading to rapid wear out of the NAND flash, etc.); reduced
power, improved bandwidth and performance, etc.

10

15

20

25

30

35

40

45

50

55

60

65

32

FIG. 5 shows copy operations corresponding to memory
writes in a system using main memory with multiple memory
classes, in accordance with another embodiment. As an
option, the exemplary system of FIG. 5 may be implemented
in the context of the architecture and environment of the
previous Figure(s), or any subsequent Figure(s). Of course,
however, the exemplary system of FIG. 5 may be imple-
mented in the context of any desired environment.

In explaining the copy operations corresponding to
memory writes in the context of FIG. 5, optional features will
be described that may be achieved using multiple classes in
main memory. In FIG. 5, a System 500 includes a CPU 502
coupled to Memory 526 using Bus #1 504, coupled to Storage
#1510 using Bus #2 512, and coupled to Storage #2 530 using
Bus #3 532. In FIG. 5 Storage #1 contains Data #1 542. In
FIG. 4 Storage #2 530 contains Data #2 540. In FIG. 5,
memory class 1 506, memory class 2 508, with memory class
3 534 and memory class 4 536 both located on Storage #1 510
together form VMy 532. In FIG. 5, memory class 1 506 and
memory class 2 508 form the Main Memory 538. In FIG. 5,
memory class 3 534 forms a cache for Storage #1 510 and
Disk #1 544. In FIG. 5, memory class 4 536 located on
Storage #1 510 contains the page file. In FIG. 5, memory class
3 534 and memory class 4 536 are not part of Main Memory
538 (but in other embodiments they may be).

In general the copy operations shown in FIG. 5 correspond
to operations that generally write to (e.g. in the direction
towards, or complete at, etc.) memory class 1 and are thus
opposite in their direction to those similar copy operations
shown in FIG. 4.

InFIG. 5 various alternative copy operations (Copy 13 553,
Copy 14 554, Copy 15555, Copy 16 556, Copy 17 557, Copy
18 558, Copy 19 559) have been diagrammed. These copy
operations perform on various pages (Page 00 580, Page 01
581, Page 02 582, Page 03 583, Page 04 584, Page 05 585,
Page 06 586).

It should be noted that, as in the description of FIG. 4, each
copy may be: (a) a true copy (e.g. element 1 in location 1
before a copy operation and two elements after a copy opera-
tion: element 1 in location 1 and element 2 in location 2, with
element 2 being an exact copy of element 1) (b) a move (e.g.
element 1 in location 1 before the copy operation, and ele-
ment 1 in location 2 after the copy operation) (¢) copy or move
using pointers or other indirection (d) copy with re-location
(element 1 in location 1 before the copy operation and two
elements after the copy operation: element 1 in location 2 and
element 2 in location 3, with element 2 being an exact copy of
element 1, but locations 1, 2, and 3 being different).

In some embodiments, a copy of types (a)-(d) may result,
for example, from software (or other algorithm, etc.) involved
that may not be described in each and every embodiment and
that in general may not be relevant to the embodiment
description.

These copy operations shown in FIG. 5 will be now
described.

Copy 13 553 shows a copy from memory class 3 to memory
class 1. This copy could be part of a page fetch or a read for
example. Copy 13 uses Bus #1 and Bus #2 as well as CPU
resources.

Copy 14 normally precedes Copy 13, but may not always
do so. For example, suppose that memory class 3 may act as
a cache for Storage #1 510 then Copy 14 may not be required
if the page requested is in cache. In the case of Copy 14 the
read is from memory class 4. Supposing that memory class 4
536 located on Storage #1 510 contains the page file then
Copy 14 and Copy 13 together represent a page fetch. In one

US 9,164,679 B2

33

embodiment, all pages (or most frequently used pages, etc.)
may be kept in memory class 4 536.

Copy 15 copies from memory class 1 to memory class 2
within Main Memory 538. In some embodiments, two page
files may be maintained, one on Storage #1 510 and one in
memory class 2 (for example memory class 2 may contain
more frequently used pages, etc.). In this case, Copy 15 may
represent a page fetch from memory class 2. Note that, in
contrastto Copy 13, and depending on how the Main Memory
is constructed, Copy 15 may not require Bus #1 or CPU
resources (or may at least greatly decrease demands on these
resources) and alternative embodiments and architectures
will be described for Main Memory that have such resource-
saving features below.

Copy 16 shows the second part of the case (e.g. represents
an action performed) in which, for example, a page is fetched.
Depending on how the system is capable of reading from
Storage #1 510, Copy 17 may be performed before Copy 16
is performed. Thus in the case that the system always reads
pages from memory class 3 (and thus Storage #1 510) to
memory class 1 (e.g. due to main memory bus architecture,
DMA architecture, etc.) then Copy 17 is performed before a
copy such as Copy 16 is performed to complete the page fetch
(similarly for a data read). Note that Copy 16, as was the case
for Copy 15, exhibits an optional feature, that in certain
embodiments the copy may not require Bus #1 and CPU
resources.

Copy 17 shows the first part of the case (e.g. represents an
action performed) in which, for example, a page is fetched.
Copy 17 performs a page fetch using a copy of a requested
page from memory class 3 to memory Class 1 (and thus from
Storage #1 510). In other embodiments a copy may be per-
formed directly to memory class 2 from memory class 3 (and
thus from Storage #1 510) and in that case Copy 16 and Copy
17 may be combined into one operation and the need to
request or consume etc. any space in memory class 1 may be
avoided.

Copy 18 is the equivalent to Copy 14 but corresponds to (or
performs) a data read from Storage #1 510 rather than a page
fetch. In the case of the page fetch, the read (Copy 14) reads
from memory class 4 (which is part of VMy 532 and contains
the page file). In the case of a data read (Copy 18) the read is
from Storage #1 510 in a region that is outside the VMy.

Copy 19 shows the copy of a page from Storage #2 530.
Copy 19 may correspond to a data read since in FIG. 5 Storage
#2 530 is not part of the VMy (though in other embodiments
it may be). In the case described above where Storage #2 530
is remote, possibly on a wireless connection that may be
unreliable (e.g. intermittent, etc.) or consumes more power
than presently available etc, one may, in some embodiments,
opt to temporarily (or permanently, for a certain period of
time, etc.) store data in memory class 2 that would otherwise
need to be read over an unreliable link. In one embodiment
such caching may be used with techniques such as monitoring
data use etc. to allow interruptions of connectivity, avoid data
corruption, etc. For example, suppose a user fetches maps on
a cell phone via a wireless connection. This would involve
operations such as Copy 19. The map data may then be stored
(using copy operations already described in FIG. 4 for
example) in memory class 2. If the wireless connection is
interrupted, map data may then be read from memory class 2
(using operations such as Copy 15 for example). In other
embodiments data may also be stored (or instead be stored, in
a configurable manner be stored, dynamically be stored,
under program control be stored, etc.) in Storage #1 510.

FIG. 6 shows a method 600 for copying a page between
different classes of memory, independent of CPU operation,

25

40

45

34

in accordance with another embodiment. As an option, the
method 600 may be implemented in the context of the archi-
tecture and environment of the previous Figures, or any sub-
sequent Figure(s). Of course, however, the method 600 may
be carried out in any desired environment. It should also be
noted that the aforementioned definitions may apply during
the present description.

As shown, a firstinstruction is received, the first instruction
being associated with a copy operation. See operation 602.
The first instruction may include any instruction or instruc-
tions associated with a copy command or being capable of
initiating a copy command or operation. For example, in
various embodiments, the first instruction may include one or
more copy operations, one or more read instructions associ-
ated with at least one copy command, one or more write
commands associated with at least one copy operation, vari-
ous other instructions, and/or any combination thereof.

In response to receiving the first instruction, a first page of
memory is copied to a second page of memory, where at least
one aspect of the copying of the first page of memory to the
second page of memory is independent of at least one aspect
of a CPU operation of a CPU. See operation 604. In the
context of the present description, a page of memory refers to
any fixed-length block of memory that is contiguous in virtual
memory.

In operation, an apparatus including a physical memory
sub-system may be configured to receive the first instruction
and copy the first page of memory to the second page of
memory. In one embodiment, the first page of memory may
be copied to the second page of memory while the CPU is
communicatively isolated from the physical memory sub-
system. In the context of the present description, being com-
municatively isolated refers to the absence of a signal (e.g. an
electrical signal, a control and/or data signal, etc.) at a given
time. In one embodiment, the apparatus may be configured
such that the communicative isolation includes electrical iso-
lation (e.g. disconnect, switched out, etc.).

In another embodiment, the physical memory sub-system
may include logic for executing the copying of the first page
of memory to the second page of memory, independent of at
least one aspect of the CPU operation. For example, the first
page of memory may be copied to the second page of
memory, independent of one or more CPU copy operations.
As another example, the first page of memory may be copied
to the second page of memory, independent of one or more
CPU write operations. In still another embodiment, the first
page of memory may be independently copied to the second
page of memory, by accomplishing the same without being
initiated, controlled, and/or completed with CPU instruc-
tions.

In still another embodiment, the physical memory sub-
system may include at least two classes of memory. As an
option, the first page of memory may be resident on a first
memory of a first memory class, and the second page of
memory may be resident on a second memory of a second
memory class. In this case, the logic may be resident on the
first memory of the first memory class and/or on the second
memory of the second memory class. In another embodiment,
the logic may be resident on a buffer device separate from the
first memory and the second memory.

As noted, in one embodiment, a first page of memory may
be copied to a second page of memory, where at least one
aspect of the copying of the first page of memory to the
second page of memory being independent of at least one
aspect of a central processing unit (CPU) operation of a CPU.
In various embodiments, difterent aspects of the copying may
be independent from the CPU operation. For example, in one

US 9,164,679 B2

35

embodiment, reading of the first page of memory may be
independent of a CPU operation. In another embodiment, a
writing of the second page of memory may be independent of
a CPU operation. In either case, as an option, the at least one
aspect of the CPU operation may include any operation sub-
sequent to an initiating instruction of the CPU that initiates
the copying.

The copying may be facilitated in different ways. For
example, in one embodiment, a buffer device (e.g. logic chip,
buffer chip, etc.) may be configured to participate with the
copying. The buffer device may be part of the physical
memory sub-system or separate from the physical memory
sub-system.

In one embodiment, the first instruction may be received
via a single memory bus. For example, the physical memory
sub-system 1A-102 of FIG. 1A may include the first page of
memory and the second page of memory. In this case, the first
instruction may be received via the single memory bus
1A-108.

More illustrative information will now be set forth regard-
ing various optional architectures and features with which the
foregoing techniques discussed in the context of any of the
present or previous figure(s) may or may not be implemented,
per the desires of the user. For instance, various optional
examples and/or options associated with the operation 602,
the operation 604, and/or other optional features have been
and will be set forth in the context of a variety of possible
embodiments. It should be strongly noted that such informa-
tion is set forth for illustrative purposes and should not be
construed as limiting in any manner. Any of such features may
be optionally incorporated with or without the inclusion of
other features described.

FIG. 7 shows a system using with multiple memory
classes, where all memory is on one bus, in accordance with
another embodiment. As an option, the exemplary system of
FIG. 7 may be implemented in the context of the architecture
and environment of the previous Figure(s), or any subsequent
Figure(s). Of course, however, the exemplary system of FIG.
7 may be implemented in the context of any desired environ-
ment.

In FIG. 7, a System 700 includes a CPU 702 coupled to
Memory 726 and coupled to Storage #1 710 using Bus #1
704. In FIG. 7, memory class 1 706, memory class 2 708, with
memory class 3 734 and memory class 4 736 both located on
Storage #1 710 together form VMy 744. In FIG. 7, memory
class 3 734 forms a cache for Storage #1 710. In FIG. 7,
memory class 4 736, located on Storage #1 710, contains the
page file.

In one embodiment, the copy operations shown in FIG. 7
may, in one embodiment, correspond to operations shown in
FIG. 4 and in FIG. 5. Note that the copy operations in FIG. 7
use double-headed arrows to simplify the diagram, but any
single copy operation may perform its operation in one direc-
tion.

In FIG. 7 there is just one single bus, Bus #1 704, for the
CPU to access the entire VMy. In FIG. 7 there may be other
changes to memory and main memory.

In FIG. 4 and in FIG. 5, main memory and memory were
equivalent. In FIG. 7 they may not necessarily be equivalent.
In FIG. 7, Memory 726 includes Main Memory 738 as a
subset. In FIG. 7, Memory 726 includes VMy 744 as a subset.

In one embodiment, main memory (e.g. primary memory,
primary storage, internal memory, etc.) may include memory
that is directly accessible to the CPU. In FIG. 7, for example,
memory class 3 734 and memory class 4 736 (which may be
part of secondary storage in various alternative embodiments)
may now be considered part of main memory (and thus not as

10

15

20

25

30

35

40

45

50

55

60

65

36

drawn in FIG. 7). In the context of the present description, this
may be refer to as “Embodiment A” of main memory. In FI1G.
7, in Embodiment A, main memory would then comprise
memory class 1 706, memory class 2 708, memory class 3 734
and memory class 4 736. In FIG. 7, in the context of Embodi-
ment A, VMy 744 would then be the same as main memory.

In an alternative Embodiment B of main memory, the role
of memory class 3 734 in FIG. 7 may be considered as cache,
and memory class 4 736 in FIG. 7 as storage, and thus not part
of Main Memory 738. In Embodiment B, Main Memory 738
comprises memory class 1 706 and memory class 2 708.

In an alternative Embodiment C of main memory, one
could take into consideration the fact that main memory is
equivalent to primary storage and thus reason that anything
equivalent to secondary storage is not main memory. With
this thinking, main memory may, in one embodiment, include
M1 only, and M2 is equivalent to secondary storage. In
Embodiment C, only memory class 1 706 in FIG. 7 would be
main memory.

In FIG. 7, Embodiment B is adopted. FIG. 7 has been used
to point out the difficulty of using the term main memory in
systems such as that shown in FIG. 7. In embodiments where
there is the possibility of confusion, use of the term main
memory has been avoided.

In one embodiment, memory may include the PM coupled
to the CPU. In such embodiment of FIG. 7, Memory 726 is the
memory coupled to the CPU 702. Note that in some embodi-
ments not all memory classes that make up Memory 726 may
be equally coupled to the CPU (e.g. directly connected, onthe
same bus, etc.), but they may be. Thus, Memory 736 in FIG.
7 comprises: memory class 1 706 (M1); memory class 2 708
(M2); memory class 3 734 (M3); memory class 4 736 (M4);
and Data #1 742 (D1).

In one embodiment, VMy 744 may include the memory
space available to the CPU. In such embodiment (in the
context of FIG. 7), VMy 744 may be the memory space
available to the CPU 702.

Note that in some embodiments CPU 702 may be coupled
to Storage #2 730 using Bus #2 732 as shown in FIG. 7. In
FIG. 7, Storage #2 730 contains Data #2 740. In FIG. 7
Storage #2 730 may now be the only Secondary Storage 746,
since now Storage #1 710 is part of Memory 726.

In one embodiment, Storage #2 730 may be used to store
various Data #2 740 (e.g. overlays, code, software, database,
etc.). In some embodiments, System 700 may be a consumer
device, Bus #2 732 may include a wireless connection, Stor-
age #2 730 may be cloud storage used to store data (e.g.
overlays, code, software, database, etc.). For example, infor-
mation (e.g. data, program code, overlay blocks, data, data-
base, updates, other software components, security updates,
patches, OS updates, etc.) may be fetched remotely from
Storage #2 730 [e.g. as an application (e.g. from an applica-
tion store, operating in demo mode, purchased but accessed
remotely, rented, monitored, etc.); as a transparent download;
via a push model; via a push model; etc.].

If Storage #2 730 (if present) is detached, then all CPU I/O
may then performed over Bus #1 704. The basic model of
VMy 744 with storage and data has not changed, and thus
may require little change to software (e.g. OS, applications,
etc.) and/or CPU (and/or CPU components, e.g. MMU, page
tables, TLB, etc.). This is one possible feature of the system
architecture when implemented as that shown and described
in the embodiment of FIG. 7. There are other possible fea-
tures, as well. One example is that the elimination of one or
more CPU, I/O or other buses may provide cost savings in a
system (e.g. through reducing pins per package and thus cost,
reducing package size and thus package cost, reduced PCB

US 9,164,679 B2

37

area and thus cost, reduced PCB density and thus cost, etc.),
power (e.g. through reduced numbers of high-power bus driv-
ers and receivers, etc.), and space savings (e.g. through
smaller packages, smaller PCB, less wiring, etc.). Yet another
possible feature is that System 700 now may only need to
handle read/write data traffic between CPU and Main
Memory on Bus #1 704. All other data traffic (e.g. paging,
overlay, caching and other data transfer functions in VMy
etc.) may be handled independently, thus freeing resources
required by Bus #1 704 and CPU 702. As shown in FIG. 7,
none of the arrows representing data traffic (e.g. move, copy
etc.) involve /O Bus #1 704. This offers further savings in
cost by potentially decreasing demands on a critical part of
the system (e.g. Bus #1 704 and CPU 702, etc.). It should be
noted now that in a system where the memory components
may be specially designed and packaged etc. (e.g. for con-
sumer electronics, cell phones, media devices, etc.) it may be
cheaper (and easier) to perform these functions in the
memory system (e.g. design in, integrate, co-locate, etc.) than
to use expensive CPU resources, increase CPU die area, add
extra CPU pins, create larger CPU packages, etc.

InFIG. 7, Bus #1 704 is drawn to diagrammatically suggest
and logically represent embodiments that include, but are not
limited to, the following alternatives: (a) Bus #1 704 may be
a JEDEC standard memory bus (large arrow) with possibly
modified control signals drawn separately as Bus #1 Control
748 (small arrow). The control signals in Bus #1 Control 748
may be JEDEC standard signals, modified JEDEC standard
signals, multiplexed signals, additional signals (e.g. new sig-
nals, extra signals, multiplexed signals, etc.), re-used or re-
purposed signals, signals logically derived from JEDEC stan-
dard signals, etc; (b) Bus #1 704 may be wider than a standard
JEDEC memory bus (e.g. 128, 256, or 512 bits etc. of data,
wider address bus, etc.). This type of embodiment, with high-
pin count data buses, makes sense because one or more 1/O
buses may not be present, for example in systems that pack-
age main memory with CPU; (¢) Bus #1 704 may be a com-
bination of I/O bus and memory bus, and may share data
and/or address signals between buses and may use shared,
separate, or new control signals (including JEDEC standard
signals, signals derived from JEDEC standard signals, or
non-standard signals, etc.) for different memory classes. In
the context of the present description, this bus may be referred
to as a hybrid bus; (d) Bus #1 704 may be a new standard or
proprietary bus that may be customized for an application
(e.g. stacked CPU and memory die in a cell phone etc.). For
example, a packet-switched bus, a split-transaction bus, etc;
(e) combinations of these.

Note thatthough, in FIG. 7, Bus #1 704 is shown separately
from Bus #1 Control 748, various terms such as the bus, or the
memory bus, or Bus #1, etc. may refer to Bus #1 704 although
all elements of Bus #1 may be included, including the control
signals, Bus #1 Control 748, for example. In some embodi-
ments, components of the bus may be called out individually,
such as when one component of the bus (e.g. data, address,
etc.) may be standard (e.g. JEDEC, etc.) but another compo-
nent of the bus (e.g. control, etc.) may be modified (e.g.
non-standard, etc.).

FIG. 8 shows a system with three classes of memory on one
bus, in accordance with another embodiment. As an option,
the exemplary system of FIG. 8 may be implemented in the
context of the architecture and environment of the previous
Figure(s), or any subsequent Figure(s). Of course, however,
the exemplary system of FIG. 8 may be implemented in the
context of any desired environment.

In FIG. 8, a System 800 includes a CPU 802 coupled to
Memory 826 and coupled to Storage #1 810 using Bus #1 804

20

25

30

35

40

45

65

38

and Bus # Control 848. In FIG. 8, memory class 1 806 (M1),
memory class 2 808 (M2), with memory class 3 834 (M3)
located on Storage #1 810 together form VMy 832. In FIG. 8,
Storage #1 810 contains Data #1 842. Note that there is just
one bus, Bus #1 804, for the CPU to access the entire VMy. In
FIG. 8, memory class 3 834, located on Storage #1 810,
contains the page file. In one embodiment, the copy opera-
tions shown in FIG. 8 may correspond to copy operations
shown in and described with regard to FIG. 4 and FIG. 5, and
that were also shown in FIG. 7. In the embodiment of FIG. 8
there is no secondary storage shown, though in different
embodiments there may be secondary storage.

FIG. 9 shows a system with multiple classes and multiple
levels of memory on one bus, in accordance with another
embodiment. As an option, the exemplary system of FIG. 9
may be implemented in the context of the architecture and
environment of the previous Figure(s), or any subsequent
Figure(s). Of course, however, the exemplary system of FIG.
9 may be implemented in the context of any desired environ-
ment.

In FIG. 9, a System 900 includes a CPU 902 coupled to
Memory 926 using Bus #1 904 and Bus #1 Control 948. In the
embodiment of FIG. 9, there may not be secondary storage,
though in different embodiments there may be secondary
storage.

There are some differences in the block diagram of the
embodiment shown in FIG. 9 from previous embodiments
even though the functions of previous embodiments are still
present: (a) there is no distinction in memory class C2 908
between cache, storage, etc. (b) In FIG. 9, both M2 and M3
are shown present in the same class of memory. The term
levels of memory will be used to describe the functionality.
For example, it may be said that level M2 and level M3 are
both present in the same class (¢) The VMy is not explicitly
shown in FIG. 9. Instead, the boundary of VMy is capable of
changing. For example, at one point in time VMy may be
equal to VMy1 932, at another point in time VMy may be
equal to VMy?2 934, etc.

In FIG. 9, VMy1 932 comprises memory level B1.M.C1
956 in memory class C1 906 plus memory level B1.M2.C2
950 in memory class C2 908.

In FIG. 9, VMy2 934 comprises memory level B1.M.C1
956 in memory class C1 906 plus memory level B1.M2.C2
950 in memory class C2 908 plus memory level B1.M3.C2
954 in memory class C2 908.

In other embodiments the VMy may be extended between
classes. Thus, for example, although M3 is shown as being in
C2 for simplicity (and perhaps no real difference between M2
and M3 as far as technology is concerned in FIG. 9), it can be
seen that in other embodiments M3 may be in another
memory class, C3 for example (not shown in FIG. 9).

In other embodiments, VMy may be moved between
classes. For example, in FIG. 9, VMy?2 is shown as being
VMy]1 (whichis M1 plus M2) plus an additional portion of C2
(or plus an additional portion of C3 as just described etc.).
Similarly, VMy3 may be M1 plus M3. Thus, changing
between VMy1 and VMy3 moves a portion of VMy from M2
to M3. If M3 is a different memory class from M2, the change
from VMyl1 to VMy3 is equivalent to moving a portion of
VMy between memory classes.

In FIG. 9, a portion of memory class C2 908 contains Data
#1 942, where that portion is B1.D1.C2 952. Of course, in
other embodiments, different levels of data (e.g. D2, D3, etc.)
may be present in a similar fashion to the different levels of
memory (e.g. M1, M2, M3, etc.). However, in the current
embodiment, the distinction between memory and data is just
that of the difference between format that data is normally

US 9,164,679 B2

39

stored in a memory system and the format that data is nor-
mally stored in a storage system (e.g. on disk using a filesys-
tem, etc.).

In FIG. 9, memory class C2 908 may contain the page file.
In one embodiment, the copy operations shown in FIG. 9 may
correspond to copy operations shown in and described with
regard to FIG. 4 and FIG. 5, and that were also shown in FI1G.
7 and FIG. 8. In the embodiment, there may be no secondary
storage, although in different embodiments there may be
secondary storage.

FIG. 10 shows a system with integrated memory and stor-
age using multiple memory classes, in accordance with
another embodiment. As an option, the exemplary system of
FIG. 10 may be implemented in the context of the architecture
and environment of the previous Figure(s), or any subsequent
Figure(s). Of course, however, the exemplary system of FIG.
10 may be implemented in the context of any desired envi-
ronment.

One aspect of embodiments such as that shown in FIG. 10
is the reduction of the number of wasted I/O accesses requir-
ing the memory bus. In those embodiments where memory
may perform many, most or all system 1/O functions, perfor-
mance is greatly enhanced. Thus, in FIG. 10, the embodiment
of System 1000 moves more 1/O functions into memory. In
this way, traffic over the high-speed memory bus is reduced,
e.g. reduced to just the essential traffic between CPU and
memory, etc.

Another aspect of embodiments such as that shown in FIG.
10 is that all VMy functions are now contained in a single
memory.

In FIG. 10, system 1000 contains a CPU 1002. In FIG. 10,
CPU 1002 is coupled to Memory (in FIG. 10) using Bus #1 (in
FIG. 10). In FIG. 10 CPU 1002 is optionally coupled to Disk
(in FIG. 10) using Bus #2 (in FIG. 10). In FIG. 10, the
Memory comprises memory class 1 (in FIG. 10) and memory
class 2 (in FIG. 10). In FIG. 10, memory class 2 comprises:
memory level M2 (in FIG. 10); memory level M3 (in F1G. 10)
used as a Page File Cache (in FIG. 10); memory level M4 (in
FIG. 10) used as a Page File RAM Disk (in FIG. 10); memory
level D1 (in FIG. 10) used as a Data RAM Disk (in FIG. 10).

In one embodiment, a RAM disk may include software
(e.g. a software driver, Microsoft Windows .dll file, etc.) used
to perform the functions of a small disk in memory (e.g.
emulate a disk, etc.). A RAM disk may be used (e.g. in an
embedded system, for data recovery, at boot time, etc.) to
implement small but high-speed disks, etc. ARAM Disk may
be implemented using any combination of memory, software,
etc. and does not have to include RAM and does not have to
perform conventional disk functions.

The use of one or more RAM disks in System 1000 is
purely for convenience of existing software, hardware and OS
design. For example, most OS use a disk for the page file. If a
portion of memory is used to emulate a disk, it may be easier
for the OS to use that portion of memory for a page file and
swap space without modification of the OS.

For example, systems using an OS (e.g. Microsoft Win-
dows, Linux, other well as other OS, etc.) may require a C
drive (in FIG. 10) (or equivalent in Linux etc.) to hold the OS
files (e.g. boot loader, etc.) and other files required at boot
time. In one embodiment, memory class 2 (or a portion of it)
may be non-volatile memory to provide a C drive. In another
embodiment, memory class 2 may be a volatile memory
technology but backed (e.g. by battery, supercapacitor, etc.).
In other embodiments, memory class 2 may be a volatile
memory technology but contents copied to a different
memory class that is non-volatile on system shut-down and
restored before boot for example.

10

25

30

40

45

50

55

40

In FIG. 10, the Data RAM disk is assigned drive letter C,
the Page File RAM disk is assigned drive letter D (in F1G. 10),
the Page File Cache is assigned letter E (in FI1G. 10), and the
(optional) Disk is assigned drive letter F (in FIG. 10).

InFIG. 10, the use of a separate Page File Cache in memory
may be compatible with existing cache systems (e.g. Ready-
Boost in Microsoft Windows, etc.).

As shown the disks C, D and E are accessible indepen-
dently over 1/O Bus #1. In FIG. 10, the disk D is dedicated as
a page file and contains the page file and is used as swap
space. In other embodiments, the CPU 1002 may use data
disk C as well as or instead of D for page files (e.g. swap
space, etc.).

In the context of the present description, Microsoft Win-
dows drive letters (e.g. volume, labels, etc.) have been uti-
lized, such as C and D etc., for illustrative purposes, to sim-
plity the description and to more easily and clearly refer to
memory regions used for data, memory regions used for swap
space, etc. For example, these regions (e.g. portions of
memory, etc.) may equally be labeled as /data and /swap in
Linux, etc. Of course, other similar functions for different
regions of memory etc. may be used in a similar fashion in
many other different types and versions of operating systems.

It should be noted that the number, location and use of the
memory regions (e.g. C, D, etc.) may be different from that
shown in FIG. 10 or in any other embodiment without altering
the essential functions. In some embodiments, one may sepa-
rate the page file and swap space from data space as this may
improve VMy performance. In other embodiments, swap
space and data space may be combined (e.g. to reduce cost, to
simplify software, reduce changes required to an OS, to work
with existing hardware, etc.).

FIG. 10 shows system 1000 using a Page File Cache. In
FIG. 10, the Page File Cache may be used for access to the
Page File RAM Disk. In some embodiments, the Page File
Cache may not be present and the CPU may access the Page
File RAM Disk directly.

The internal architecture of the Memory will be described
in detail below but it should be noted that in various embodi-
ments of the system shown in FIG. 10: (a) C and D may be on
the same bus internal to the Memory, with E on a separate bus
(b) D and E may be on the same bus, with C on a separate bus,
(c) other similar permutations and/or combinations, etc.

In other alternative embodiments (e.g. for a cell phone,
etc.), some data (e.g. additional VMY, database, etc.) may be
stored remotely and accessed over a wired or wireless link
Such a link (e.g. to remote storage etc.) is indicated by the
optional (as indicated by dotted line(s) in FIG. 10) Bus #2 and
optional Disk #1 in FIG. 10.

It should be noted that not all of C, D and E have to be in
memory class 2. For example, any one more, combination, or
all of C, D and E may be in memory class 1 or other memory
class (not shown in FIG. 10, but that may be present in other
embodiments etc.), etc.

Itshould be noted that C, D and E functions may move (e.g.
migrate, switch, etc.) between memory class 1 and memory
class 2 or any other memory class (not shown in FIG. 10, but
that may be present in other embodiments etc.).

In some embodiments, Data RAM Disk C may be included
aswell as optional Disk F (e.g. HDD, SSD, cloud storage etc.)
because Disk F may be larger and cheaper than a RAM disk.

In some embodiments, the OS may be stored on a disk F
(e.g. permanent media, etc.) rather than a volatile RAM disk,
for example.

FIG. 11 shows a memory system with two memory classes
containing pages, in accordance with another embodiment.
As an option, the exemplary system of FIG. 11 may be imple-

US 9,164,679 B2

41

mented in the context of the architecture and environment of
the previous Figure(s), or any subsequent Figure(s). Of
course, however, the exemplary system of FIG. 11 may be
implemented in the context of any desired environment.

FIG. 11 shows a Memory System 1100 with Memory 1102.
Memory 1102 comprises pages distributed between M1.C1
1104 and M2.C2 1106.

In FIG. 11, memory M1.C1 1104 e.g. level M1 memory of
memory class C1 (e.g. DRAM in some embodiments, SRAM
in some embodiments, etc.) may have a capacity of N pages
(e.g. Page 1 1108, Page 2, etc., Page N 1110) as shown in FIG.
11. M1.1 may be a few gigabytes in size.

InFIG. 11, memory M2.C2 1106 [e.g. level M2 memory of
memory class C2 (e.g. DRAM in some embodiments it M1 is
SRAM, NAND flash in some embodiments if M1 is DRAM,
etc.] may have a larger capacity than M1 of M pages (e.g.
Page 11112, Page 2, etc., Page M 1114) as shown in FIG. 11.
In some embodiments, M2.C2 may be several terabytes or
larger in size.

In one embodiment, a page size may be 4 kB. A 4 GB
memory system could then hold up to 1M pages. In the 2011
timeframe a disk that is part of secondary storage and nor-
mally used to hold a page file as part of VMy may hold up to
2 TB. Thus, the disk may hold up to 2 TB/4 kB or 500M pages.
Itmay be desirableto at least match that capability in a system
such as FIG. 11 using multiple memory classes. Such a large
memory capacity may be useful, for example, to hold very
large in-memory databases or multiple virtual machines
(VMs).

One potential issue is how to address such a large memory.
A standard JEDEC DDR memory address bus may not have
enough address bits to address all available memory (e.g. a
standard memory address bus is not wide enough).

The potential addressing issue is similar to an office build-
ing having four incoming phone lines or circuits but eight
office phones. Suppose are four incoming phone numbers.
This potential issue may be solved by giving each office
phone an extension number. Four phone numbers may
address eight phone extension numbers, but with the limita-
tion that only four extensions can be used at any one time. The
four incoming phone numbers provide a continuously chang-
ing window to the eight extension numbers.

FIG. 11 shows one embodiment that allows the addressing
of'a memory M2 using an address bus that is too narrow (e.g.
too few bits). The Inset 1116 shows the contents of a single
look-up table at two points in time, Table 1118 and Table
1120. At time t1 Table 1118 provides a mapping between
address in M1 and corresponding addresses in M2. For sim-
plicity, in Table 1118 only four addresses are shown for M1
(though there are N). These four addresses map to four
addresses in M2. At time t1 address 1 in M1 maps to address
51in M2, etc. At time t2 the mapping changes to that shown in
Table 1120. Note that now address 1 in M1 corresponds to
address 3 in M2.

Thus, four pages in M1.C1 1104, Pages 1148 are effec-
tively mapped to eight pages in M2.C2 1106, Pages 1144.

In different embodiments (a) the CPU and VMM including
page tables, etc. may be used to handle the address mapping;
(b) logic in the memory system may be used; (c) or both may
be used.

In the current embodiment, the page (memory page, virtual
page) may include a fixed-length or fixed size block of main
memory that is contiguous in both PM addressing and VMy
addressing. A system with a smaller page size uses more
pages, requiring a page table that occupies more space. For
example, if a 2732 virtual address space is mapped to 4 kB
(2712 bytes) pages, the number of virtual pages is 2°20

20

30

40

45

60

42

(=2732/2"12). However, if the page size is increased to 32 KB
(2715 bytes), only 2"17 pages are required. The current trend
is towards larger page sizes. Some instruction set architec-
tures can support multiple page sizes, including pages signifi-
cantly larger than the standard page size of 4 kB.

Starting with the Pentium Pro processor, the IA-32 (x86)
architecture supports an extension of the physical address
space to 64 GBytes with a maximum physical address of
FFFFFFFFFH. This extension is invoked in either of two
ways: (1) using the physical address extension (PAE) flag (2)
using the 36-bit page size extension (PSE-36) feature (start-
ing with the Pentium III processors). Starting with the Intel
Pentium Pro, x86 processors support 4 MB pages using Page
Size Extension (PSE) in addition to standard 4 kB pages.
Processors using Physical Address Extension (PAE) and a
36-bit address can use 2 MB pages in addition to standard 4
kB pages. Newer 64-bit IA-64 (Intel 64, x86-64) processors,
including AMD’s newer AMD64 processors and Intel’s
Westmere processors, support 1 GB pages.

Intel provides a software development kit (SDK) PSE36
that allows the system to use memory above 4 GB as a RAM
disk for a paging file. Some Windows OS versions use an
application programming interface (API) called Address
Windowing Extensions (AWE) to extend memory space
above 4 GB.

AWE is a set of Microsoft APIs to the memory manager
functions that enables programs to address more memory
than the 4 GB that is available through standard 32-bit
addressing. AWE enables programs to reserve physical
memory as non-paged memory and then to dynamically map
portions of the non-paged memory to the program’s working
set of memory. This process enables memory-intensive pro-
grams, such as large database systems, to reserve large
amounts of physical memory for data without necessarily
having to be paged in and out of a paging file for usage.
Instead, the data is swapped in and out of the working set and
reserved memory is in excess of the 4 GB range. Additionally,
the range of memory in excess of 4 GB is exposed to the
memory manager and the AWE functions by PAE. Without
PAE, AWE cannot necessarily reserve memory in excess of 4
GB.

OS support may, in some embodiment, also required for
different page sizes. Linux has supported huge pages since
release 2.6 using the hugetlbfs filesystem. Windows Server
2003 (SP1 and newer), Windows Vista and Windows Server
2008 support large pages. Windows 2000 and Windows XP
support large pages internally, but are not exposed to appli-
cations. Solaris beginning with version 9 supports large pages
on SPARC and the x86. FreeBSD 7.2-RELEASE supports
superpages.

As costs and performance of the memory technologies vary
(e.g. DRAM, flash, disk), then the capacities allocated to
different memory levels, M1, M2 etc, may change.

In the embodiment shown in FIG. 11 it may be desirable to
allow: (a) the CPU to address and read/write from/to memory
M1.C1 1104 and from/to memory M2.C2 1106; (b) to per-
form copy operations between M1 and M2 (and between M2
and M1); (c) perform table updates etc; (d) send and receive
status information etc. In the embodiment of FIG. 11, three
simple commands are shown that may be sent from CPU to
Memory 1102: RD1 1124; CMD1 1126; WR1 1128.

In FIG. 11, at time t1 command RD1 1124 from the CPU
performs a read from Page a 1146. If Page a is already in
M1.C1 1104 the read completes at t2. If not, then Page d is
fetched via an operation shown as Read 1130 from Page d
1138 and the read completes at t3. The embodiments
described below will describe how the memory bus may

US 9,164,679 B2

43

handle read completions that may occur at variable times (e.g.
either at 12 or at 13, etc.). It should be noted now that several
embodiments are possible, such as: (a) one embodiment may
use a split-transaction bus (e.g. PCI-E, etc.); (b) another
embodiment may use a retry signal; (c) another embodiment
may exchange status messages with the CPU; (d) a combina-
tions of these, etc.

InFIG. 11, at time t4 command CMD1 1124 from the CPU
initiates an operation etc. Suppose that CMD1 is a Swap 1132
operation. Then Page b 1147 in M1.C1 1104 and Page ¢ 1140
in M2.C2 1106 are swapped as shown in FIG. 11. The
embodiments described below describe how logic in Memory
1102 may perform such operations (e.g. swap operation(s),
command(s), etc.). It should be noted that such commands
may include: updating tables in M1.C1 1104; updating tables
in M2.C2 1106; updating tables in logic of Memory 1102;
operations to swap, move, transfer, copy, etc; operations to
retrieve status from Memory 1102; etc.

In FIG. 11, at time t5 command WR1 1124 from the CPU
performs a write to Page ¢ 1150. Depending on how address-
ing is handled, in one embodiment for example, a table such
as Table 1120 may then be read by logic in Memory 1102. As
a result of the mapping between addresses in M1 and
addresses in M2, a further operation Write 1134 from page ¢
1150 in M1.C1 1104 to Page £ 1142 in M2.C2 1106.

FIG. 12 shows a memory system with three memory
classes containing pages, in accordance with another embodi-
ment. As an option, the exemplary system of FIG. 12 may be
implemented in the context of the architecture and environ-
ment of the previous Figure(s), or any subsequent Figure(s).
Of course, however, the exemplary system of FIG. 12 may be
implemented in the context of any desired environment.

FIG. 12 shows a Memory System 1200 with Memory 1202.
Memory 1202 comprises pages distributed between M1.C1
1204, M2.C2 1206, and M3.C3 1208

InFIG. 12, memory M1.C1 1204 [e.g. level M1 memory of
memory class C1 (e.g. SRAM in some embodiments, embed-
ded DRAM in some embodiments, etc.)] may have a capacity
of N pages (e.g. Page 11210, Page 2, etc., to Page N 1212) as
shown in FIG. 11. In one embodiment, M1.1 may be a few
megabytes in size.

InFIG. 12, memory M2.C2 1206 [e.g. level M2 memory of
memory class C2 (e.g. DRAM in some embodiments it M1 is
embedded DRAM, NAND flash in some embodiments if M1
is DRAM, etc.)] may have a larger capacity than M1 of M
pages (e.g. Page 1 1214, Page 2, etc., to Page M 1216) as
shown in FIG. 11. In some embodiments, M2.C2 may be a
few gigabytes or larger in size.

InFIG. 12, memory M3.C3 1208 (e.g. level M3 memory of
memory class C3 (e.g. NAND flash in some embodiments if
M1 is SRAM, M2 is DRAM, etc.) may have a much larger
capacity than M2 of P pages (e.g. Page 1 1218, Page 2, ..., to
Page P 1220) as shown in FIG. 11. In some embodiments,
M3.C3 may be many gigabytes in size or even much larger
(e.g. terabytes, etc.) in size.

In FIG. 12, operations that may be performed in one
embodiment are shown: Operation 1221; Operation 1222;
Operation 1223; Operation 1224; Operation 1225; Operation
1226; Operation 1227; Operation 1228.

In FIG. 12, Operation 1221 corresponds to a read R1 from
the CPU. If M1 is acting as a DRAM cache (e.g. M1 may be
SRAM, and M2 DRAM, etc.), for example, then Page a may
be read from M1 if already present. If not then Page b is
fetched from M2.

In FIG. 12, Operation 1222 corresponds to a write W1 from
the CPU. Page ¢ may be written to M1 and then copied to Page
din M2.

25

30

35

40

45

55

44

In FIG. 12, Operation 1223 corresponds to a read R2 from
the CPU of Page e from M2 where Page ¢ is already present
in M2.

InFIG. 12, Operation 1224 corresponds to a write W2 from
the CPU to Page f of M2. Depending on the embodiment,
Page f may be copied to Page g in M1 so that it may be read
faster in future; Page f may also be copied (and/or moved) to
Page h in M3.

In FIG. 12, Operation 1225 corresponds to a command C2
from the CPU to copy or move etc. Page i in M3 to Page j in
M2. In one embodiment, this may be a CPU command that
prepares M2 for a later read of Page j.

In FIG. 12, Operation 1226 corresponds to a command C3
from the CPU to copy Page k in M3 to Page m in M1. This
may in some embodiments be a CPU command that prepares
M1 for a later read of Page m.

In FIG. 12, Operation 1227 corresponds to a swap of Page
n and Page o in M3 initiated without CPU command. In
certain embodiments that use NAND flash technology etc. for
M3, this may be to provide wear-leveling etc.

In FIG. 12, Operation 1228 corresponds to a swap of Page
p and Page q in M3 initiated by CPU command C4. In certain
embodiments, that use NAND flash technology etc. for M3
this may be to provide wear-leveling under CPU (or OS etc.)
control etc.

FIG. 13 shows a memory system with three memory
classes containing memory pages and file pages, in accor-
dance with another embodiment. As an option, the exemplary
system of FIG. 13 may be implemented in the context of the
architecture and environment of the previous Figure(s), or
any subsequent Figure(s). Of course, however, the exemplary
system of FIG. 13 may be implemented in the context of any
desired environment.

FIG. 13 shows a Memory System 1300 with Memory 1302.
Memory 1302 comprises pages distributed between M1.C1
1304, M2.C2 1306, and M3.C3 1308.

InFIG. 13, memory M1.C1 1304 [e.g. level M1 memory of
memory class C1 (e.g. SRAM in some embodiments, embed-
ded DRAM in some embodiments, etc.)] may have a capacity
of N pages. M1.1 may be a few megabytes in size.

InFIG. 13, memory M2.C2 1306 (e.g. level M2 memory of
memory class C2 (e.g. DRAM in some embodiments it M1 is
embedded DRAM, NAND flash in some embodiments if M1
is DRAM, etc.) may have a larger capacity than M1 of M
pages.

In FIG. 13, memory C3 1308 [e.g. memory class C3 (e.g.
NAND flash in some embodiments if M1 is SRAM, M2 is
DRAM, etc.)] may have a much larger capacity than M2 of P
pages. In some embodiments, M3.C3 may be a many
gigabytes or even much larger (terabytes) in size. In the
embodiment of FIG. 13 memory C3 1308 is partitioned into
M3.C3 1310 and D1.C3 1312. The structure of M3.C3 1310
is memory pages managed by the VMM. The structure of
D1.C3 1312 may also be pages but managed by the filesystem
(e.g. of the OS. etc.). Thus D1 may be thought of as a disk in
memory or RAM disk.

The Inset 1316 shows the contents of a single table at two
points in time, Table 1318 and Table 1320. At time t1 Table
1318 is a list (e.g. inventory, pointers, etc.) of pages in M3 and
pagesinD1. For simplicity in Table 1318 only a few pages are
shown for M3 (though there are P pages in M3) and for D1
(though there are F pages in D1). At time t1 there are four
pages in M3 (1, 2, 3, 4) and four pages in D1 (5, 6, 7, 8), etc.
Suppose the Memory 1302 receives a command CX 1314 that
would result in a page being copied or moved from M3 to D1.
An example of such a command would be a write from
memory M3 to the RAM disk D1. In order to perform that

US 9,164,679 B2

45

operation Table 1318 may be updated. Suppose Memory
1302 receives a command or commands CY 1330 that would
result in a page being copied or moved from M3 to D1 and a
page being moved or copied from D1 to M3. Again, examples
would be a read/write to/from M3 from/to D1. Again, in one
embodiment, these operations may be performed by updating
Table 1318. Table 1320 shows the results. At time t2 there are
three pagesinM3 (1, 2, 8) and five pages in D1 (3,4, 5, 6), etc.
Inone embodiment, these operations may be performed with-
out necessarily moving data. In this case, the boundaries that
define M3 and D1 may be re-organized.

FIG. 14 shows a multi-class memory apparatus 1400 for
dynamically allocating memory functions between different
classes of memory, in accordance with one embodiment. As
an option, the apparatus 1400 may be implemented in the
context of the architecture and environment of the previous
Figures, or any subsequent Figure(s). Of course, however, the
apparatus 1400 may be implemented in the context of any
desired environment. It should also be noted that the afore-
mentioned definitions may apply during the present descrip-
tion.

As shown, a physical memory sub-system 1402 is pro-
vided. In various embodiments, the physical memory sub-
system 1402 may include a monolithic memory circuit, a
semiconductor die, a chip, a packaged memory circuit, or any
other type of tangible memory circuit. In one embodiment,
the physical memory sub-system 1402 may take the form of
a DRAM circuit.

As shown, the physical memory sub-system 1402 includes
a first memory 1404 of a first memory class and a second
memory 1406 of a second memory class. In the one embodi-
ment, the first memory class may include non-volatile
memory (e.g. Fe(RAM, MRAM, and PRAM, etc.), and the
second memory class may include volatile memory (e.g.
SRAM, DRAM, T-RAM, Z-RAM, and TTRAM, etc.). In
another embodiment, one of the first memory 1404 or the
second memory 1406 may include RAM (e.g. DRAM,
SRAM, etc.) and the other one of the first memory 1404 or the
second memory 1406 may include NAND flash. In another
embodiment, one of the first memory 1404 or the second
memory 1406 may include RAM (e.g. DRAM, SRAM, etc.)
and the other one of the first memory 1404 or the second
memory 1406 may include NOR flash. Of course, in various
embodiments, any number of combinations of memory
classes may be utilized.

The second memory 1406 is communicatively coupled to
the first memory 1404. In one embodiment, the second
memory 1406 may be communicatively coupled to the first
memory 1404 via direct contact (e.g. a direct connection, etc.)
between the two memories. In another embodiment, the sec-
ond memory 1406 may be communicatively coupled to the
first memory 1404 via a bus. In yet another embodiment, the
second memory 1406 may be communicatively coupled to
the first memory 1404 utilizing a through-silicon via.

As another option, the communicative coupling may
include a connection via a buffer device. In one embodiment,
the buffer device may be part of the physical memory sub-
system 1402. In another embodiment, the buffer device may
be separate from the physical memory sub-system 1402.

In one embodiment, the first memory 1404 and the second
memory 1406 may be physically separate memories that are
communicatively coupled utilizing through-silicon via tech-
nology. In another embodiment, the first memory 1404 and
the second memory 1406 may be physically separate memo-
ries that are communicatively coupled utilizing wire bonds.
Of course, any type of coupling may be implemented that

10

15

20

25

30

35

40

45

50

55

60

65

46

functions to allow the second memory 1406 to be communi-
catively coupled to the first memory 1404.

The physical memory sub-system 1402 is configured to
dynamically allocate one or more memory functions from the
first memory 1404 of the first memory class to the second
memory 1406 of the second memory class. The memory
functions may include any number of memory functions and
may include any function associated with memory.

For example, in one embodiment, the one or more memory
functions may include a cache function. In another embodi-
ment, the memory functions may include a page-related func-
tion. A page-related function refers to any function associated
with a page of memory. In various embodiments page-related
functions may include one or more of the following opera-
tions and/or functions (but are not limited to the following): a
memory page copy simulating (e.g. replacing, performing,
emulating, etc.) for example a software bcopy() function;
page allocation; page deallocation; page swap; simulated I/O
via page flipping (e.g. setting or modifying status or other bits
in page tables etc.); etc.

In another embodiment, the memory functions may
include a file-related function. A file-related function refers to
any function associated with a file of memory. In various
embodiments file-related functions may include one or more
of the following operations and/or functions (but are not
limited to the following): file allocation and deallocation; data
deduplication; file compression and decompression; virus
scanning; file and filesystem repair; file and application cach-
ing; file inspection; watermarking; security operations;
defragmentation; RAID and other storage functions; data
scrubbing; formatting; partition management; filesystem
management; disk quota management; encryption and
decryption; ACL parsing, checking, setting, etc; simulated
file or buffer I/O via page flipping (e.g. setting or modifying
status or other bits in page tables etc.); combinations of these;
etc. In yet another embodiment, the memory functions may
include a copy operation or a write operation. Still yet, in one
embodiment, the memory functions may involve a reclassi-
fication of at least one portion of the first memory 1404 of the
first memory class.

In one embodiment, the dynamic allocation of the one or
more memory functions from the first memory 1404 to the
second memory 1406 may be carried out in response to a CPU
instruction. For example, in one embodiment, a CPU instruc-
tion from a CPU 1410 may be received via a single memory
bus 1408. In another embodiment, the dynamic allocation
may be carried out independent of at least one aspect of the
CPU operation.

As an option, the dynamic allocation of the one or more
memory functions may be carried out utilizing logic. In one
embodiment, the logic may side on the first memory 1404
and/or the second memory 1406. In another embodiment, the
logic may reside on a buffer device separate from the first
memory 1404 and the second memory 1406.

Furthermore, in one embodiment, the apparatus 1400 may
be configured such that the dynamic allocation of the one or
more memory functions includes allocation of the one or
more memory functions to the second memory 1406 during a
first time period, and allocation of the one or more memory
functions back to the first memory 1404 during a second time
period. In another embodiment, the apparatus may be config-
ured such that the dynamic allocation of the one or more
memory functions includes allocation of the one or more
memory functions to the second memory 1406 during a first
time period, and allocation of the one or more memory func-
tions to a third memory of a third memory class during a
second time period.

US 9,164,679 B2

47

More illustrative information will now be set forth regard-
ing various optional architectures and features with which the
foregoing techniques discussed in the context of any of the
present or previous figure(s) may or may not be implemented,
per the desires of the user. For instance, various optional
examples and/or options associated with the configuration/
operation of the physical memory sub-system 1402, the con-
figuration/operation of the first and second memories 1404
and 1406, the configuration/operation of the memory bus
1408, and/or other optional features have been and will be set
forth in the context of a variety of possible embodiments. It
should be strongly noted that such information is set forth for
illustrative purposes and should not be construed as limiting
in any manner. Any of such features may be optionally incor-
porated with or without the inclusion of other features
described.

FIG. 15 shows a method 1500 for reclassifying a portion of
memory, in accordance with one embodiment. As an option,
the method 1500 may be implemented in the context of the
architecture and environment of the previous Figures, or any
subsequent Figure(s). Of course, however, the method 1500
may be implemented in the context of any desired environ-
ment. It should also be noted that the aforementioned defini-
tions may apply during the present description.

As shown, a reclassification instruction is received by a
physical memory sub-system. See operation 1502. In the
context of the present description, a reclassification instruc-
tion refers to any instruction capable of being utilized to
initiate the reclassification of memory, a portion of memory,
or data stored in memory. For example, in various embodi-
ments, the reclassification instruction may include one or
more copy instructions, one or more write instructions, and/or
any other instruction capable of being utilized to initiate a
reclassification.

As shown further, a portion of the physical memory sub-
system is identified. See operation 1504. Further, the identi-
fied portion of the physical memory sub-system is reclassi-
fied, in response to receiving the reclassification instruction,
in order to simulate an operation. See operation 1506.

The simulated operation may include any operation asso-
ciated with memory. For example, in one embodiment, the
identified portion of the physical memory sub-system may be
reclassified in order to simulate a copy operation. In various
embodiments the copy operation may be simulated without
necessarily reading the portion of the physical memory sub-
system and/or without necessarily writing to another portion
of the physical memory sub-system.

Furthermore, various reclassifications may occur in
response to the reclassification instruction. For example, in
one embodiment, the identified portion of the physical
memory sub-system may be reclassified from a page in
memory to a file in the memory. In another embodiment, the
identified portion of the physical memory sub-system may be
reclassified from a file in memory to a page in the memory.

In one embodiment, the identified portion of the physical
memory sub-system may be reclassified by editing metadata
associated with the identified portion of the physical memory
sub-system. The metadata may include any data associated
with the identified portion of the physical memory sub-sys-
tem. For example, in one embodiment, the metadata may
include a bit. As an option, the metadata may be stored in a
table.

In one embodiment, the identified portion of the physical
memory sub-system may be reclassified independent of at
least one aspect of a CPU operation. In another embodiment,
the identified portion of the physical memory sub-system

10

15

20

25

30

35

40

45

50

55

60

65

48

may be reclassified in response to a CPU instruction. As an
option, the CPU instruction may be received via a single
memory bus.

For example, in one embodiment, the method 1500 may be
implemented utilizing the apparatus 1A-100 or 1400. In this
case, the identified portion of the physical memory sub-sys-
tem may be reclassified utilizing logic residing on the first
memory and/or on the second memory. Of course, in another
embodiment, the logic may be resident on a buffer device
separate from the first memory and the second memory or on
any other device.

More illustrative information will now be set forth regard-
ing various optional architectures and features with which the
foregoing techniques discussed in the context of any of the
present or previous figure(s) may or may not be implemented,
per the desires of the user. For instance, various optional
examples and/or options associated with the operation 1502,
the operation 1504, the operation 1506, and/or other optional
features have been and will be set forth in the context of a
variety of possible embodiments. It should be strongly noted
that such information is set forth for illustrative purposes and
should not be construed as limiting in any manner. Any of
such features may be optionally incorporated with or without
the inclusion of other features described.

FIG. 16 shows a DIMM using multiple memory classes, in
accordance with another embodiment. As an option, the
exemplary system of FIG. 16 may be implemented in the
context of the architecture and environment of the previous
Figure(s), or any subsequent Figure(s). Of course, however,
the exemplary system of FIG. 16 may be implemented in the
context of any desired environment.

FIG. 16 shows a laptop 1600 and illustrates a computing
platform using a dual-in-line memory module (DIMM) 1602
with multiple memory classes as a memory system

In FIG. 16 DIMM 1602 comprises one or more of Com-
ponent 1604 (e.g. integrated circuit, chip, package, etc.) com-
prising memory level M1 (e.g. DRAM in one embodiment,
etc.); one or more of Component 1606 (e.g. integrated circuit,
chip, package, etc.) comprising memory level M2 (e.g.
NAND flash in one embodiment if M1 is DRAM, etc.); one or
more of Component 1608 (e.g. integrated circuit, chip, pack-
age, etc.) comprising memory logic (e.g. buffer chip, etc.).

In different embodiments DIMM 1602 may be an SO-
DIMM, UDIMM, RDIMM, etc.

FIG. 17 shows a computing platform 1700 employing a
memory system with multiple memory classes included on a
DIMM, and capable of coupling to an Optional Data Disk, in
accordance with another embodiment. As an option, the
exemplary system of FIG. 17 may be implemented in the
context of the architecture and environment of the previous
Figure(s), or any subsequent Figure(s). Of course, however,
the exemplary system of FIG. 17 may be implemented in the
context of any desired environment.

The memory system includes DRAM and NAND flash
comprising: a Page File Cache, a PageFile RAM Disk and a
Data RAM Disk. Other embodiments may use other configu-
rations of multiple memory classes combined into a single
component and coupled to a CPU using a single bus.

FIG. 18 shows a memory module containing three memory
classes, in accordance with another embodiment. As an
option, the exemplary system of F1IG. 18 may be implemented
in the context of the architecture and environment of the
previous Figure(s), or any subsequent Figure(s). Of course,
however, the exemplary system of FIG. 18 may be imple-
mented in the context of any desired environment.

FIG. 18 illustrates a computing platform using a Memory
Module 1802 (e.g. DIMM, SO-DIMM, UDIMM, RDIMM,

US 9,164,679 B2

49
etc.) with three different memory classes: M1.C1 1804 (e.g.
SRAM, etc.), M2.C2 1808 (e.g. DRAM, etc.), and memory
class 3 1806 (e.g. NAND flash, etc.). In FIG. 18, Memory
Module 1802 also comprises one or more of Component 1810
memory logic (e.g. buffer chip, etc.).

In FIG. 18, memory class 3 1806 is partitioned into six
portions (e.g. block, region, part, set, partition, slice, rank,
bank, etc.) that include a Page File RAM Disk 1820, a Page
File Cache 1822, a Page File Cache RAM Disk 1824, a Data
RAM Disk 1826, a Page File Memory 1828, a Data Cache
RAM Disk 1830. Different embodiments may use different
combination of these portions. Also, in various embodiments,
different applications may use different combinations of
these portions.

In FIG. 18 Application 1 1832 uses a first portion of
memory class 3 1806 portions: a Page File RAM Disk 1820,
a Page File Cache 1822, a Page File Cache RAM Disk 1824,
a Data RAM Disk 1826. In FIG. 18 Application 3 1834 uses
a second, different, portion of memory class 3 1806 portions:
a Page File Cache RAM Disk 1824, a Data RAM Disk 1826,
a Page File Memory 1828, a Data Cache RAM Disk 1830.

In different embodiments the portions of memory class 3
1806 corresponding to applications (e.g. Application 1 1832,
Application 3 1834, etc.) may be separately manipulated (e.g.
by the CPU, by the OS, by the Component 1810 memory
logic, etc.).

In one embodiment, the portions of memory class 3 1806
corresponding to applications (e.g. Application 1 1832,
Application 3 1834, etc.) may correspond to virtual machines
(VMs) and the VMs may then easily be swapped in and out of
Memory 1812 (e.g. to secondary storage, other device (lap-
top, desktop, docking station, etc), cloud storage, etc.

In other embodiments, groups of portions (e.g. Application
1 1832, and Application 3 1834 together, etc.) may be
manipulated as bundles of memory.

FIG. 19 shows a system coupled to multiple memory
classes using only a single memory bus, and using a buffer
chip, in accordance with another embodiment. As an option,
the exemplary system of FIG. 19 may be implemented in the
context of the architecture and environment of the previous
Figure(s), or any subsequent Figure(s). Of course, however,
the exemplary system of FIG. 19 may be implemented in the
context of any desired environment.

In FIG. 19, System 1900 comprises a CPU 1902 and
Memory 1908. In FIG. 19, CPU 1902 is coupled to a buffer
chip 1910 (e.g. memory buffer, interface circuit, etc.). In FIG.
19, the CPU 1902 is coupled to Memory 1908 using a
Memory Bus 1904. The Memory 1908 comprises a buffer
chip 1910 coupled with a component of a memory class 1
1912 and a second component of memory class 2 1914. Note
that in such a configuration, a page in a component of memory
class 1 could be copied into a component of memory class 2
by the buffer chip 1910 without necessarily using bandwidth
of the Memory Bus 1904 or resources of CPU 1902. In one
embodiment, some or all of the VMy operations may be
performed by the buffer chip 1910 without necessarily using
bandwidth of the Memory Bus 1904.

In FIG. 19 Memory Bus 1904 may be of a different width
(or may have other different properties, etc.) than the Memory
Internal Bus 1906 that couples CPU 1902 to the bufter chip
1910.

FIG. 20 shows a system 2000 comprising a CPU (in FIG.
20) coupled to a Memory (in FIG. 20) using multiple different
memory classes using only a single Memory Bus, and
employing a buffer chip (in FIG. 20) with embedded DRAM
memory, in accordance with another embodiment. As an
option, the exemplary system of F1G. 20 may be implemented

10

20

25

30

35

40

45

50

55

60

65

50

in the context of the architecture and environment of the
previous Figure(s), or any subsequent Figure(s). Of course,
however, the exemplary system of FIG. 20 may be imple-
mented in the context of any desired environment.

In FIG. 20 Bus 2010 and Bus 2008 may have different
widths.

In FIG. 20 Bus 2010 may be the same width as Bus 2008
outside the buffer chip but different widths inside the buffer
chip.

In FIG. 20 multiple buffer chips may be used so that when
they are all connected in parallel the sum of the all the Bus
2010 widths is equal to the Bus 2008 width. Similar alterna-
tive embodiments are possible with FIGS. 19, 21, 22.

In FIG. 20 memory Class 1 2002 may be SRAM, DRAM,
etc.

With the same configuration as FIG. 20 there may be more
than one memory class external to the buffer chip.

FIG. 21 shows a system with a buffer chip (in FIG. 21) and
three memory classes on a common bus, in accordance with
another embodiment. As an option, the exemplary system of
FIG. 21 may be implemented in the context of the architecture
and environment of the previous Figure(s), or any subsequent
Figure(s). Of course, however, the exemplary system of FIG.
21 may be implemented in the context of any desired envi-
ronment.

In FIG. 21 System 2100 comprises CPU (in FIG. 21) and
Memory (in FIG. 21). Memory uses multiple different
memory classes with only a single Memory Bus. CPU is
coupled to a buffer chip. buffer chip is coupled to multiple
different memory components of different memory classes
over a single Internal Memory Bus 2104.

In other embodiments, there may be one or more Internal
Memory Bus 2104. That is, not all Memory Classes may be
on the same bus in some embodiments.

In one embodiment, memory class 1 (in FIG. 21) and
memory class 2 (in FIG. 21) may be on the same bus, and
memory class 3 (in FIG. 21) may be on a separate bus.

In another embodiment, memory class 1 and memory class
3 may be on the same bus, and memory class 2 may be on a
separate bus.

In some embodiments, there may be connections, commu-
nication, coupling etc. (control signals, address bus, data bus)
between memory classes. In one embodiment, there may be
three possible bi-directional (some may be unidirectional)
connections: memory class 1 to memory class 3; memory
class 1 to memory class 2; memory class 2 to memory class 3.

FIG. 22 shows a system with a buffer chip (in FIG. 22) and
three memory classes on separate buses, in accordance with
another embodiment. As an option, the exemplary system of
FIG. 22 may be implemented in the context of the architecture
and environment of the previous Figure(s), or any subsequent
Figure(s). Of course, however, the exemplary system of FIG.
22 may be implemented in the context of any desired envi-
ronment.

In FIG. 22 System 2200 comprises CPU 2202 and Memory
2204. Memory uses multiple different memory classes, CPU
is coupled to a buffer chip. buffer chip is coupled to multiple
different memory components of different memory classes
using: Internal Memory Bus 2206; Internal Memory Bus
2208; Internal Memory Bus 2210.

In one embodiment, embedded DRAM (in FIG. 22) (on the
buffer chip) may be used for memory class 1 (in FIG. 22). In
another embodiment, four or more classes of memory may be
utilized.

In some embodiments there may be connections, commu-
nication, coupling etc. (control signals, address bus, data bus)
between memory classes. There are three possible bi-direc-

US 9,164,679 B2

51

tional (some may be unidirectional) connections: memory
class 1 to memory class 3 (in FIG. 22); memory class 1 to
memory class 2 (in FIG. 22); memory class 2 to memory class
3.

FIG. 23A shows a system, in accordance with another
embodiment. As an option, the exemplary system of FIG.
23 A may be implemented in the context of the architecture
and environment of the previous Figure(s), or any subsequent
Figure(s). Of course, however, the exemplary system of FIG.
23 A may be implemented in the context of any desired envi-
ronment.

FIG. 23 A shows a computer platform 2300 that includes a
platform chassis 2310, and at least one processing element
that consists of or contains one or more boards, including at
least one motherboard 2320. Of course, the platform 2300 as
shown may comprise a single case and a single power supply
and a single motherboard. However, other combinations may
be implemented where a single enclosure hosts a plurality of
power supplies and a plurality of motherboards or blades.

In one embodiment, the motherboard 2320 may be orga-
nized into several partitions, including one or more processor
sections 2326 consisting of one or more processors 2325 and
one or more memory controllers 2324, and one or more
memory sections 2328. In one embodiment, the notion of any
of the aforementioned sections is purely a logical partition-
ing, and the physical devices corresponding to any logical
function or group of logical functions might be implemented
fully within a single logical boundary, or one or more physical
devices for implementing a particular logical function might
span one or more logical partitions. For example, the function
of'the memory controller 2324 may be implemented in one or
more of the physical devices associated with the processor
section 2326, or it may be implemented in one or more of the
physical devices associated with the memory section 2328.

FIG. 23B shows a computer system with three DIMMs, in
accordance with another embodiment. As an option, the
exemplary system of FIG. 23B may be implemented in the
context of the architecture and environment of the previous
Figure(s), or any subsequent Figure(s). Of course, however,
the exemplary system of FIG. 23B may be implemented in the
context of any desired environment.

FIG. 23B illustrates an embodiment of a memory system,
such as, for example, the Memory System 2358, in commu-
nication with a Processor System 2356. In FIG. 23B, one or
more Memory Modules 2330(1)-2330 (N) each contain one
or more Flash Chips 2340(1)-2340 (N), one or more buffer
chips 2350(1)-2350(N), and one or more DRAMs 2342(1)-
2342(N) positioned on (or within) a Memory Module 2330
).
Although the memory may be labeled variously in FIG.
23B and other figures (e.g. memory, memory components,
DRAM, etc), the memory may take any form including, but
not limited to, DRAM, synchronous DRAM (SDRAM),
double data rate synchronous DRAM (DDR SDRAM, DDR2
SDRAM, DDR3 SDRAM, etc.), graphics double data rate
synchronous DRAM (GDDR SDRAM, GDDR2 SDRAM,
GDDR3 SDRAM, etc.), quad data rate DRAM (QDR
DRAM), RAMBUS XDR DRAM (XDR DRAM), fast page
mode DRAM (FPM DRAM), video DRAM (VDRAM),
extended data out DRAM (EDO DRAM), burst EDO RAM
(BEDO DRAM), multibank DRAM (MDRAM), synchro-
nous graphics RAM (SGRAM), phase-change memory
(PCM), flash memory, and/or any other class of volatile or
non-volatile memory either separately or in combination.

FIGS. 23C-23F show exemplary systems, in accordance
with various embodiments. Alternative embodiments to FIG.
23A, FIG. 23B, and other similar embodiments are possible,

10

15

20

25

30

35

40

45

50

55

60

65

52

including: (1) positioning (e.g. functionally, logically, physi-
cally, electrically, etc.) one or more buffer chips 2362
between a Processor System 2364 and Memory 2330 (see, for
example, System 2360 in FIG. 23C); (2) implementing the
function of (or integrating, packaging, etc.) the one or more
buffer chips 2372 within the Memory Controller 2376 of CPU
2374 (see, for example, System 2370 in FIG. 23D); (3) posi-
tioning (e.g. functionally, logically, physically, electrically,
etc.) one or more buffer chips 2384(1)-2384 (N) in a one-to-
one relationship with memory class 1 2386(1)-2386 (N) and
memory class 2 2388(1)-2388 (N) in Memory 2382 (see, for
example, System 2380 in FIG. 23E); (4) implementing (or
integrating the function of; etc.) the one or more buffer chips
2392 within a CPU 2394 (e.g. processor, CPU core, etc.) (see,
for example, System 2390 in FIG. 23F).

As an option, the exemplary systems of FIGS. 23C-23F
may be implemented in the context of the architecture and
environment of the previous Figure(s), or any subsequent
Figure(s). Of course, however, the exemplary system of
FIGS. 23C-23F may be implemented in the context of any
desired environment.

It should be noted that in various embodiments other pos-
sible placements of buffer chips 2372 are possible (e.g. on
motherboard, on DIMM, on CPU, packaged with CPU, pack-
aged with DRAM or other memory, etc.).

FIG. 24 A shows a system 2400 using a Memory Bus com-
prising an Address Bus (in FIG. 24A), Control Bus (in FIG.
24A), and bidirectional Data Bus (in FIG. 24A), in accor-
dance with one embodiment. As an option, the exemplary
system of FIG. 24 A may be implemented in the context of the
architecture and environment of the previous Figure(s), or
any subsequent Figure(s). Of course, however, the exemplary
system of FIG. 24 A may be implemented in the context of any
desired environment.

In one embodiment, additional signals may be added to the
Memory Bus. The additional signals may be control, status,
error, signaling, etc. signals that are in addition to standard
(e.g. JEDEC standard DDR2, DDR23, DDR3, etc.) signals.

In one embodiment, the Control Bus may be bidirectional.

In one embodiment, there may be more than one Address
Bus (e.g. for different memory classes, etc.).

In one embodiment, there may be more than one Control
Bus (e.g. for different memory classes, etc.)

In one embodiment, there may be more than one Data Bus
(e.g. for different memory classes, etc.).

In one embodiment, there may be additional buses and/or
signals e.g. for control, status, polling, command, coding,
error correction, power, etc.).

FIG. 24B shows a timing diagram for a Memory Bus (e.g.,
as shown in FIG. 24 A, etc.), in accordance with one embodi-
ment.

As an option, the exemplary system of FIG. 24B may be
implemented in the context of the architecture and environ-
ment of the previous Figure(s), or any subsequent Figure(s).
Of course, however, the exemplary system of FIG. 24B may
be implemented in the context of any desired environment.

In FIG. 24B, a Read Command (in FIG. 24B) is placed on
the Memory Bus at time t1. The Read Command may com-
prise address information on the Address Bus (in FIG. 24B)
together with control information on the Control Bus (in FI1G.
24B). At time t2 the memory places data (the Data Result (in
FIG. 24B)) on the Data Bus (in FIG. 24B). The read latency of
the memory is the difference in time, t2—t1.

Note that the timing diagram shown in FIG. 24B may vary
in detail depending on the exact memory technology and
standard used (if any), but in various embodiments the gen-

US 9,164,679 B2

53
eral relationship between signals and their timing may be
similar to that shown in FIG. 24B.

FIG. 25 shows a system with the PM comprising memory
class 1 and memory class 2, in accordance with one embodi-
ment. As an option, the exemplary system of FIG. 25 may be
implemented in the context of the architecture and environ-
ment of the previous Figure(s), or any subsequent Figure(s).
Of course, however, the exemplary system of FIG. 25 may be
implemented in the context of any desired environment.

In FIG. 25, a first Memory Bus (in FIG. 25) is used to
couple the CPU (in FIG. 25) and the memory system. In FIG.
25, a second Memory Bus is used to couple memory class 1
(in FIG. 25) and memory class 2 (in FIG. 25). The second
Memory Bus comprises Address Bus A2 (in FIG. 25), Control
Bus C2 (in FIG. 25), and bidirectional Data Bus D2 (in FIG.
25).

Note that FIG. 25 does not show details of the coupling
between the Memory Bus, the memory system, memory class
1 and memory class 2. The coupling may include, for
example, one or more buffer chips or other circuits that are
described in detail below.

In FIG. 25, memory class 1 and memory class 2 are shown
containing Page X (in FIG. 25). In one embodiment, memory
class 1 may serve as a cache (e.g. temporary store, de-staging
mechanism, etc.) memory for memory class 2. In one
embodiment, a page may be written first to memory class 1
and then subsequently written to memory class 2. In one
embodiment, after a page is copied (e.g. moved, transferred,
etc.) from memory class 1 to memory class 2 the page may be
kept in memory class 1 or may be removed. In different
embodiments the CPU may only be able to read from memory
Class 1 or may be able to read from both memory class 1 and
memory class 2. In one embodiment, the CPU may request
that a page be copied from memory class 2 to memory class 1
before being read from memory class 1, etc. Of course, these
embodiments, as well as other similar embodiments, as well
as different combinations of these and other similar embodi-
ments may be used.

It should thus be noted that the exemplary system of FIG.
25 may be implemented in the context of the architecture and
environment of the previous Figure(s), or any subsequent
Figure(s) with or without the use of buffer chips (e.g. interface
chips, interface circuits, etc.).

FIG. 26 shows a timing diagram for read commands, in
accordance with one embodiment.

In FIG. 26, a normal (e.g. JEDEC standard, other standard,
etc.) read (READI (in FIG. 26)) is placed on the Address Bus
Al and Control Bus C1 at time tl. In one embodiment, a
normal read command may correspond to a request for data
that is present in memory class 1. At time t2, if the requested
data is present in memory class 1, the requested data from
memory class 1 is placed on Data Bus D1. Attime t3 a second
read command (READ2 (in FIG. 26)) is placed on Address
Bus Al and Control Bus C1. In one embodiment, this read
command requests data that is not present in memory class 1
and may result, for example, in a read command for (e.g.
addressed to, etc.) memory class 2 being placed on bus A2 and
C2 at time t4 (labeled as a Cache Miss and Delayed Read in
FIG. 26). At time t5, the requested data from memory class 2
is placed on bus D2. At time t6, the requested data is placed on
bus D1.

In one embodiment, the protocol on Memory Bus may be
changed to allow the timing to break (e.g. violate, exceed,
non-conform to, deviate from, etc.) a JEDEC standard (e.g.
DDR2, DDR3, DDRA4, etc.) or other standard etc.

10

15

20

25

30

35

40

45

50

55

60

65

54

In another embodiment, the Memory Bus may use a
JEDEC standard (e.g. DDR2, DDR3, DDR4, etc.) or other
standard.

In other embodiments, the operation of the memory system
may be changed from a standard (e.g. JEDEC, etc.), examples
of which will be described below.

FIG. 27 shows a computing system with memory system
and illustrates the use of a virtual memory address (in FIG.
27) (or virtual address, VA), in accordance with one embodi-
ment. The dispatch queue contains a list of threads (in FIG.
27) (1,2, ..., N)running on the CPU (in FIG. 27). The Page
Table (in FIG. 27) may be used to translate a VA to a PA. In
FIG. 27, Page Miss Logic (in FIG. 27) is used to retrieve Page
X (in FIG. 27) from the Page File (in FIG. 27) on a page miss.

In other embodiments, the memory address translation and
page table logic corresponding to that shown in FIG. 27 may
be more complex (e.g. more detailed, more complicated,
more levels of addressing, etc.) than shown in FIG. 27 and
may include other features (e.g. multiple CPUs, multiple
cores, nested page tables, hierarchical addresses, hierarchical
page tables, multiple page tables, some features implemented
in hardware, some features implemented in hardware, inter-
mediate caches, multiple modes of addressing, etc.), but the
basic principles may remain as shown in FIG. 27.

FIG. 28 shows a system with the PM comprising memory
class 1 (in. FIG. 28) and memory class 2 (in FIG. 28) using a
standard memory bus, in accordance with one embodiment.
As an option, the exemplary system of FIG. 28 may be imple-
mented in the context of the architecture and environment of
the previous Figure(s), or any subsequent Figure(s). Of
course, however, the exemplary system of FIG. 28 may be
implemented in the context of any desired environment. Thus,
for example, in one embodiment additional signals may be
added to either memory bus shown in FIG. 28. In some
embodiments the Control Bus 28-C1 and/or Control Bus
28-C2 may be bidirectional

In FIG. 28, the standard memory bus comprises: Address
Bus 28-A1, Data Bus 28-D1, and Control Bus 28-C1. InFIG.
28 a second memory bus comprises: Address Bus 28-A2,
Data Bus 28-D2, and Control Bus 28-C2. In FIG. 28, the Page
Miss Logic (in FIG. 28) is used to instruct the Memory
Controller (in FIG. 28) that a page miss has occurred. The
Memory Controller places a command on the Memory Bus to
instruct the PM to copy Page X (in FIG. 28) from memory
class 2 to memory class 1.

In one embodiment, the CPU (in FIG. 28) uses multiple
threads. In one embodiment, the system uses time between
executions of threads to fetch (e.g. command, retrieve, move,
transfer, etc.) pages (e.g. Page X), as necessary, from memory
class 2.

In one embodiment, the fetching of page(s) may be per-
formed in software using hypervisor(s) and virtual machine
(s). In other embodiments, the fetching of pages may be
performed in hardware. In other embodiments, the fetching of
pages may be performed in hardware and/or software.

In one embodiment, memory class 1 may be faster than
memory class 2 e.g. (1) memory class 1=DRAM, memory
class 2=NAND flash; (2) memory class 1=SRAM, memory
class 2=NAND flash; (3) etc.

FIG. 29 shows a timing diagram for a system employing a
standard memory bus (e.g. DDR2, DDR3, DDRA4, etc.), in
accordance with one embodiment. As an option, the timing
diagram of FIG. 29 may be altered depending on the context
of the architecture and environment of systems shown in the
previous Figure(s), or any subsequent Figure(s) without alter-
ing the function.

US 9,164,679 B2

5§

In FIG. 29, a normal (e.g. JEDEC standard, etc.) read
(READI1 (in FIG. 29)) is placed on the Address Bus Al and
Control Bus C1 at time t1. At time t2 the data from memory
class 1 is placed on Data Bus D1. At time t3 a second special
[e.g. containing special data (e.g. control, command, status,
etc.), non-standard, etc.] read command (READ2 (in FIG.
29)) is placed on bus Al and C1 as a result of a page miss in
the CPU. This special read command READ2 may result in a
read command for memory class 2 being placed on bus A2
and C2 at time t4 (labeled Cache Miss in FIG. 29). At time t5
(labeled as Page X copied from memory class 2 to memory
Class 1 in FIG. 29), the requested data (copied from memory
class 2) is placed on bus D2. Attime t6 (labeled as READ3 in
FIG. 29), the CPU issues another read command (READ3).
This read command is a normal read command and results in
the requested data from memory class 1 (e.g. copied from
memory class 2, transferred from memory class 2, etc.) being
placed on bus D1 at time t7 (labeled as CPU reads Page X
from memory class 1 in FIG. 29).

In one embodiment, the CPU and memory hardware may
be standard (e.g. unaltered from that which would be used
with a memory system comprising a single memory class)
and the memory bus may also be standard (e.g. JEDEC stan-
dard, etc.).

In other embodiments, the read command READ2 may be
a different special command (e.g. write command, etc.).
Examples of such embodiments are described below.

In other embodiments, the read command READ2 may be
one or more commands (e.g. combinations of one or more
standard/special write commands and/or one or more stan-
dard/special read commands, etc.). Examples of such
embodiments are described below.

FIG. 30 shows a memory system where the PM comprises
a memory buffer (e.g. buffer, buffer chip, etc.) (in FIG. 30),
memory class 1 (in FIG. 30) and memory class 2 (in FIG. 30),
in accordance with one embodiment.

As an option, the exemplary system of FIG. 30 may be
implemented in the context of the architecture and environ-
ment of the previous Figure(s), or any subsequent Figure(s).
Of course, however, the exemplary system of FIG. 30 may be
implemented in the context of any desired environment.

In FIG. 30, the memory bus (30-Al, 30-C1, and 30-D1)
may use a standard bus protocol (e.g. DDR2, DDR3, DDR4,
etc.). In FIG. 30, the buffer chip may be coupled to memory
class 1 and memory class 2 using standard (e.g. JEDEC
standard, etc.) buses: (30-A2, 30-C2, 30-D2) and (30-A3,
30-C3, 30-D3).

In other embodiments, bus (30-A1, 30-C1, 30-D1) and/or
(30-A2,30-C2,30-D2) and/or bus (30-A3, 30-C3, 30-D3) (or
components (e.g. parts, signals, etc.) of these buses, e.g.
30-Al, 30-C1, 30-D1, etc.) may be non-standard buses (e.g.
modified standard, proprietary, different timing, etc.).

In other embodiments, the buffer chip may comprise one or
more buffer chips connected in series, parallel, series/paral-
lel, etc.

FIG. 31 shows the design of a DIMM (in FIG. 31) that is
constructed using a single memory buffer (e.g. buffer, buffer
chip, etc.) (in FIG. 31) with multiple DRAM (in FI1G. 31) and
NAND flash chips (in FIG. 31), in accordance with one
embodiment.

As an option, the exemplary design of FIG. 31 may be
implemented in the context of the architecture and environ-
ment of the previous Figure(s), or any subsequent Figure(s).
Of course, however, the exemplary design of FIG. 31 may be
implemented in the context of any desired environment.

In FIG. 31, a first memory class is packaged in individual
chips on a first side of the DIMM. In FIG. 31, a second

10

20

25

30

35

40

45

50

55

60

65

56
memory class is packaged in individual chips on the second
side of the DIMM. In FIG. 31, a memory buffer is packaged
in an individual chip on the first side of the DIMM.

In one embodiment the DIMM may be a standard design
(e.g. standard JEDEC raw card, etc.). In such an embodiment,
the space constraints may dictate the number and placement
(e.g. orientation, location, etc.) of the memory packages. In
such an embodiment, the space constraints may also dictate
the number and placement of the memory buffer(s).

In other embodiments, the one or more memory classes
may be packaged together (e.g. stacked, etc.).

In other embodiments, the one or more memory buffer(s)
may be packaged together (e.g. stacked, etc.) with the one or
more memory classes.

FIG. 32A shows a method to address memory using a Page
Table (in FIG. 37A), in accordance with one embodiment.

In FIG. 32A, the Page Table contains the mappings from
VA to PA. As shown in FIG. 32A, VA=00 maps to PA=01 and
Page 01 in the Page Table. As shown in FIG. 32A, PA=01 and
Page 01 contains data 0010__1010 in the DRAM (in FIG.
37A). As shown in FIG. 32A, the Page Table is 8 bits in total
size, has 4 entries, each entry being 2 bits. As shown in FIG.
32A, the DRAM is 32 bits in size. As shown in FIG. 32A, the
VA is 2 bits and the PA is 2 bits.

In one embodiment of a CPU architecture, the PA and VA
may be different than that shown in FIG. 32A (e.g. 32 bits, 64
bits, different lengths, etc.). In a one embodiment of a
memory system architecture, the DRAM may be different
(e.g. much larger) than that shown in FIG. 32A (e.g. 1 GB-256
GB, 8 Gbit-2 Thit, etc.). In one embodiment of a CPU archi-
tecture, the page table(s) (and surrounding logic, etc.) may be
more complex than that shown in FIG. 32A [e.g. larger,
nested, multi-level, combination of hardware/software,
including caches, multiple tables, multiple modes of use,
hierarchical, additional (e.g. status, dirty, modified, protec-
tion, process, etc.) bits, etc.] and may be a page table system
rather than a simple page table.

In some embodiments, the page table system(s) may main-
tain a frame table and a page table. A frame, sometimes called
a physical frame or a page frame, is a continuous region of
physical memory. Like pages, frames are be page-size and
page-aligned. The frame table holds information about which
frames are mapped. In some embodiments, the frame table
may also hold information about which address space a page
belongs to, statistics information, or other background infor-
mation.

The page table holds the mapping between a virtual
address of a page and the address of a physical frame. In some
embodiments, auxiliary information may also be kept (e.g. in
the page table, etc.) about a page such as a present bit, a dirty
bit, address space or process 1D information, amongst others
(e.g. status, process, protection, etc.).

In some system embodiments, secondary storage (e.g.
disk, SSD, NAND flash, etc.) may be used to augment PM.
Pages may be swapped in and out of PM and secondary
storage. In some embodiments, a present bit may indicate the
pages that are currently present in PM or are on secondary
storage (the swap file), and may indicate how to access the
pages (e.g. whether to load a page from secondary storage,
whether to swap another page in PM out, etc.).

In some system embodiments, a dirty bit (or modified bit)
may allow for performance optimization. A page on second-
ary storage that is swapped in to PM, then read, and subse-
quently paged out again does not need to be written back to
secondary storage, since the page has not changed. In this
case the dirty bitis not set. If the page was written to, the dirty
bit is set. In some embodiments the swap file retains a copy of

US 9,164,679 B2

57

the page after it is swapped in to PM (thus the page swap
operation is a copy operation). When a dirty bitis notused, the
swap file need only be as large as the instantaneous total size
of all swapped-out pages at any moment. When a dirty bit is
used, at all times some pages may exist in both physical
memory and the swap file.

In some system embodiments, address space information
(e.g. process ID, etc.) is kept so the virtual memory manage-
ment (VMM) system may associate a pages to a process. In
the case, for example, that two processes use the same VA, the
page table contains different mappings for each process. In
some system embodiments, processes are assigned unique
IDs (e.g. address map identifiers, address space identifiers,
process identifiers (PIDs), etc.). In some system embodi-
ments, the association of PIDs with pages may be used in the
selection algorithm for pages to swap out (e.g. candidate
pages, etc.). For example, pages associated with inactive pro-
cesses may be candidate pages because these pages are less
likely to be needed immediately than pages associated with
active processes.

Insome system embodiments, there may be a page table for
each process that may occupy a different virtual-memory
page for each process. In such embodiments, the process page
table may be swapped out whenever the process is no longer
resident in memory.

Thus it may be seen that, as an option, the exemplary design
of FIG. 32A may be implemented in the context of the archi-
tecture and environment of the previous Figure(s), or any
subsequent Figure(s). Of course, however, the exemplary
design of FIG. 32A may be implemented in the context of any
desired environment.

FIG. 32B shows a method to map memory using a window,
in accordance with one embodiment.

In FIG. 32B there are two memory classes: (1) memory
class 1, DRAM (in FIG. 32B); (2) memory class 2, NAND
flash (in FIG. 32B). In a system corresponding to the diagram
of FIG. 32B that contains more than one memory class it is
possible that there are insufficient resources (e.g. address
space is too small, address bus is too small, software and/or
hardware limitations, etc.) to allow the CPU to address all of
the memory in the system.

In one embodiment, the method of FIG. 32B may have two
distinct characteristics: (1) the memory class 2 address space
(e.g. NAND flash size, etc.) may be greater than the address
space of the memory bus; (2) data is copied from NAND flash
to DRAM before it may be read by the CPU.

InFIG. 32B, afirst memory class (e.g. DRAM, etc.) may be
used as a movable (e.g. controllable, adjustable, etc.) window
into a (larger) second memory class (e.g. NAND flash, etc.).
The address space of the window is small enough that it may
be addressed by the CPU. The window may be controlled
(e.g. moved through the larger address space of the second
memory class, etc.) using the page table in the CPU.

FIG. 32B has been greatly simplified to illustrate the
method. In FIG. 32B, the Page Table (in FIG. 32B) contains
the mappings from VA to PA. As shown in FIG. 32B the Page
Table has 16 entries (000-111), each entry being 2 bits. As
shown in FIG. 32A, the DRAM is 4 pages, or 32 bits in size.
As shown in FIG. 32A, the NAND flash is 8 pages, or 64 bits
in size. As shown in FIG. 32A, the VA is 2 bits and the PA is
2 bits. There are 2 bits of PA (corresponding to 4 addresses) so
all 8 pages in NAND flash cannot be directly addressed by the
CPU. As shown in FIG. 32B, VA=010 initially (indicated by
the dotted arrow marked 1) maps to PA=01 and Page 01 in the
Page Table. As shown in FIG. 32B, PA=01 and Page 01
contains data 0011_0101 in the DRAM. This data 0011__
0101 was previously copied from the NAND flash, as shown

10

15

20

25

30

35

40

45

50

55

60

65

58

(indicated by the dotted arrow marked 2) in FIG. 32B. At a
later time the CPU uses VA=000 to access data that is not in
DRAM (indicated by the solid arrow marked 3). As shown in
FIG. 32B, VA=110 now maps to PA=01 and Page 01 in the
Page Table. The old mapping at VA=000 in the Page Table is
invalidated (e.g. removed, deleted, marked by using a bit in
the page table, etc.). A copy operation is used to move the
requested data 0010__1010 from NAND flash to DRAM (in-
dicated by the solid arrow marked 4). The CPU is now able to
read data 0010__1010 from the DRAM.

Thus in order to obtain data at VA (e.g. data corresponding
to VA=110) the following steps are performed: (1) a page in
DRAM is selected (e.g. Page=01) that may be used (e.g.
replaced, ejected, etc.); (2) the data (e.g. 0010 1010 at
address corresponding to VA=110) is copied from NAND
flash to DRAM (e.g. Page=01 in DRAM); (3) the Page Table
is updated (e.g. so that VA=110 maps to Page=01); (4) the old
Page Table entry (e.g. VA=000) is invalidated; (5) the CPU
performs a read to VA (e.g. VA=110); (6) the Page Table maps
VA to PA (e.g. from VA=110 to PA=01 and Page=01 in the
DRAM); (6) the data is read from PA (e.g. 0010__1010 from
DRAM).

In FIG. 32B, the DRAM forms a 32-bit window into the
64-bit NAND flash. In one embodiment, the 32-bit window is
divided into 4 sets. Each set may hold a word of 8 bits. Each
set may hold one word from the NAND flash. In one embodi-
ment a table (e.g. TLB) in hardware in the CPU or software
(e.g. inthe OS, in a hypervisor, etc.) keeps the mapping from
VA to PA as a list of VAs. In one embodiment, the list of VAs
may be a rolling list. For example, 8 VAs may map to 4 PAs,
as in FIG. 32B. In such an embodiment, as PAs in the DRAM
are used up a new map is added and the old one invalidated,
thus forming the rolling list. Once all 8 spaces have been used,
the list is emptied (e.g. TLB flushed, etc.) and the list started
again.

In one embodiment (A), the CPU and/or OS and/or soft-
ware (e.g. hypervisor, etc.) may keep track of which pages are
in DRAM. In such an embodiment (A), a hypervisor may
perform the VA to PA translation, determine the location of
the PA, and may issue a command to copy pages from NAND
flash to DRAM if needed.

In another embodiment (B), a region of NAND flash may
be copied to DRAM. For example, in FIG. 32B, if an access
is required to data that is in the upper 32 bits of the 64-bit
NAND flash, a region of 32 bits may be copied from NAND
flash to the 32-bit DRAM.

In other embodiments, combinations of embodiment (A)
and embodiment (B), as just described, may be used.

In a one embodiment of a CPU architecture, the PA and VA
may be different than that shown in FIG. 32B (e.g. 32 bits, 64
bits, different lengths, etc.). In a one embodiment of a
memory system architecture, the DRAM may be different
(e.g. much larger) than that shown in FIG. 32B (e.g. 1 GB-256
GB, 8 Gbit-2 Thit, etc.). In a one embodiment of a CPU
architecture, the page table(s) (and surrounding logic, etc.)
may be more complex than that shown in FIG. 32B.

Thus, for example, in embodiments using multiple
memory classes together with an existing CPU and/or OS
architecture, the architecture may be more complex than that
shown in FIG. 32B both in order to accommodate the existing
architecture and because the architecture is inherently more
complex than that shown in FIG. 32B.

In other embodiments, the page table(s) may be more com-
plex than shown in FIG. 32B (e.g. larger, nested, multi-level,
combination of hardware/software, include caches, use table
lookaside buffer(s) (e.g. TLB, etc.), use multiple tables, have
multiple modes of use, be hierarchical, use additional (e.g.

US 9,164,679 B2

59

status, dirty, modified, protection, process, etc.) bits, or use
combinations of any these, etc.). In some embodiments, the
page table may be a page table system (e.g. multiple tables,
nested tables, combinations of tables, etc.) rather than a
simple page table.

In FIG. 32B, for the purposes of addressing the DRAM
may also be viewed as a cache for the NAND flash. As such
any addressing and caching scheme may be used in various
alternative embodiments. For example, in some embodi-
ments, the addressing scheme may use tags, sets, and offsets.
In some embodiments, the address mapping scheme may use
direct mapping, associative mapping, n-way set associative
mapping, etc. In some embodiments, the write policy for the
memory classes may be write back, write through, etc.

Thus it may be seen that, as an option, the exemplary design
of FIG. 32B may be implemented in the context of the archi-
tecture and environment of the previous Figure(s), or any
subsequent Figure(s). Of course, however, the exemplary
design of FIG. 3B may be implemented in the context of any
desired environment.

In some embodiments memory class 1 may be SRAM,
memory class 2 may be DRAM, etc. In some embodiments
memory may be of any technology (e.g. SDRAM, DDR,
DDR2, DDR3, DDR4, GDDR, PRAM, MRAM, FeRAM,
embedded DRAM, eDRAM, SRAM, etc.).

FIG. 33 shows a flow diagram that illustrates a method to
access PM that comprises two classes of memory, in accor-
dance with one embodiment.

In other embodiments: (1) Step 2 may be performed by the
CPU, by software (e.g. hypervisor, etc.) or by the memory
system; (2) Step 4 may be a READ command that may trigger
the memory system to copy from memory class 2 (MC2) to
memory class 1 (MC1) if required; (3) Step 4 may be a
WRITE command to a special location in PM that may trigger
the memory system to copy from memory class 2 (MC2) to
memory class 1 (MC1) if required; (4) Step 6 may be a retry
mechanism (either part of a standard e.g. JEDEC, etc. or
non-standard); (5) Step 4 may be a READ command to which
the PM may respond (e.g. with a special code, status, retry,
etc.); (6) Step 6 may be a poll (e.g. continuous, periodic,
repeating, etc.) from the CPU to determine if data has been
copied to MC1 and is ready; (7) the PM may respond in
various ways in step 7 (e.g. retry, special data with status,
expected time to complete, etc.).

FIG. 34 shows a system to manage PM using a hypervisor,
in accordance with one embodiment.

In FIG. 34, the Hypervisor (in FIG. 34) may be a software
module and may allow the CPU (in FIG. 34) to run multiple
VMs. In FIG. 34, the Hypervisor contains two VMs, VM1 (in
FIG. 34) and VM2 (in FIG. 34). In FIG. 34 VM2 may make a
request for VA1. The Address Translation (in FIG. 34) block
in the Hypervisor translates this address to VA2. Using a
custom address translation block may allow the Hypervisorto
determine if VA2 is held in memory class 1 (MC1) (in FIG.
34) or in memory class 2 (MC2) (in FIG. 34). If the data is
held in MC2 then one of the mechanisms or methods already
described may be used to copy (or transfer, move, etc.) the
requested data from MC2 to MC1.

In some embodiments, the Address Translation block may
be in hardware. In other embodiments, the Address Transla-
tion block may be in software. In some embodiments, the
Address Translation block may be a combination of hardware
and software.

FIG. 35 shows details of copy methods in a memory system
that comprises multiple memory classes, in accordance with
one embodiment.

10

15

20

25

30

35

40

45

50

55

60

65

60

As an option, the exemplary methods of FIG. 35 may be
implemented in the context (e.g. in combination with, as part
of, together with, etc.) of the architecture and environment of
the previous Figure(s), or any subsequent Figure(s).

In a memory system with multiple memory classes, copies
between two (or more) memory classes may be performed
using several methods (or combinations of methods, etc.).

A first method is shown in FIG. 35 and uses two steps:
Copy 1 and Copy 2. In this method Copy 1 copies Page X (1)
(in FIG. 35) from memory class 1 (in FIG. 35) to Page X (2)
(inFIG. 35) in the CPU (in FIG. 35) using the Memory Bus (in
FIG. 35). In one embodiment, the CPU may perform Copy 1.
Other methods of performing Copy 1 include, but are not
limited to: (1) use of direct cache injection; (2) use of a DMA
engine; (3) other hardware or software copy methods; (4)
combinations of the above. Copy 2 then copies Page X (2) to
Page X (3) (in FIG. 35) using the Memory Bus. The CPU may
also perform Copy 2, although other methods of performing
Copy 2 are possible. Copy 1 and Copy 2 do not have to use the
same methods, but they may.

A second method in FIG. 35 uses a single step (Copy 3) and
does not necessarily require the use of the Memory Bus. In
one embodiment, the Memory Bus may be a high-bandwidth
and constrained resource. In some embodiments, use of the
Memory Bus for CPU traffic may be maximized while use for
other purposes may be minimized. For example, some
embodiments may avoid using the Memory Bus for copies
between memory classes.

In FIG. 35 the step labeled Copy 3 copies Page X (1) in
memory class 1 directly to Page X (3) in memory class 2 (in
FIG. 35). The step Copy 3 may be initiated by the CPU using
a command over the Memory Bus. The step Copy 3 may also
be initiated by a memory controller (not shown in FIG. 35) in
the memory system. The memory controller or memory con-
trollers may be located anywhere in the system as shown in
several previous embodiments: (1) e.g. in a buffer chip
located on a DIMM, motherboard, etc; (2) embedded on one
ormore of the chips, packages etc. that contain one or more of
the memory classes shown in FIG. 35; (3) part of the CPU; (4)
a combination of the above.

In FIG. 35, one or more triggers (e.g. commands, signals,
etc.) for the memory controller to initiate a copy may include:
(1) wear-leveling of one of the memory classes; (2) mainte-
nance of free space in one of the memory classes; (3) keeping
redundant copies in multiple memory classes for reliability;
(4) de-staging of cached data from one memory class to
another; (5) retrieval of data on a CPU command; (5) other
triggers internal to the memory system; (6) other external
triggers e.g. from the CPU, OS, etc; (7) other external triggers
from other system components or software; (8) combinations
of any of the above.

In FIG. 35, during the step Copy 3 in some embodiments
the memory controller may also perform an operation on the
Memory Bus during some or all of the period of step Copy 3.
In one embodiment, the following sequence of steps may be
performed, for example: (1) disconnect the Memory Bus
from the CPU; (2) raise a busy flag (e.g. assert a control
signal, set a status bit, etc.); (3) issue a command to the CPU;
(4) alter the normal response, protocol, or other behavior; (5)
any combination of the above.

In FIG. 35, in some embodiments, the memory controller
may also interact with the CPU before, during, or after the
step Copy 3 using a control signal (e.g. sideband signal, etc.)
separate from the main Memory Bus or part of the Memory
Bus. The control signal (not shown in FIG. 35) may use: (1)a

US 9,164,679 B2

61

separate wire; (2) separate channel; (3) multiplexed signal on
the Memory Bus; (4) alternate signaling scheme; (5) a com-
bination of these, etc.

In some embodiments, one copy method may be preferred
over another. For example, in a system where performance is
important an embodiment may use a single copy that avoids
using the Memory Bus. In a system where power is important
an embodiment may use a slow copy using the Memory Bus
that may use less energy.

The choice of embodiments and copy method(s) may
depend on the relative power consumption of the copy meth-
od(s) and other factors. It is also possible, for example, that a
single copy without the use of the Memory Bus consumes less
power than a copy that does require the use of the Memory
Bus. Such factors may change with time, user and/or system
preferences, or other factors etc. For example, in various
embodiments, the choice of copy method(s) may depend on:
(1) whether the system is in “sleep”, power down, or other
special power-saving mode (e.g. system failure, battery low,
etc.) or other performance mode etc; (2) the length (e.g. file
size, number of pages, etc.), type (e.g. contiguous, sequential,
random, etc.), etc. of the copy; (3) any special requirements
from the user, CPU, OS, system, etc. (e.g. low latency
required for real-time transactions (e.g. embedded system,
machine control, business, stock trading, etc.), games, audio,
video or other multi-media content, etc.). In some embodi-
ments, the system may modify (e.g. switch, select, choose,
change, etc.) the copy method either under user and/or system
control in a manual and/or automatic fashion. In some
embodiments, the system may modify copy methods during a
copy.

FIG. 36 shows a memory system architecture comprising
multiple memory classes and a buffer chip with memory, in
accordance with one embodiment. As an option, the exem-
plary architecture of FIG. 36 may be implemented in the
context (e.g. in combination with, as part of, together with,
etc.) of the architecture and environment of the previous
Figure(s), or any subsequent Figure(s).

As shown in FIG. 36, the buffer chip (in FIG. 36) may be
connected between the CPU (in FIG. 36) and multiple
memory classes. In FIG. 36, the buffer chip is shown con-
nected to memory class 2 (in FIG. 36) using Bus 2 (in FIG. 36)
and connected to memory class 3 (in FIG. 36) using Bus 3 (in
FIG. 36).

In one embodiment, memory class 1 (in FIG. 36) may be
used as a cache for the rest of the memory system (comprising
memory class 2 and memory class 3). In such an embodiment
the PA from the CPU etc. may be divided into tag, block and
offset to determine if requested data is present in the cache. In
various embodiments, the type of cache mapping (e.g. direct
mapping, fully associative, k-way associative, etc.) and the
cache policy (e.g., write back, write through, etc.) may be
implemented in any desired manner.

Other embodiments may include (but are not limited to) the
following variations: (1) more than two memory classes may
be connected to the buffer chip; (2) less than two memory
classes may be connected to the buffer chip (3); the memory
classes may be any memory technology (e.g. DRAM, NAND
flash, etc); (4) Bus 2 and Bus 3 may be combined or separate
as shown; (5) alternative bus arrangements may be used: e.g.
a common bus, multi-drop bus, multiplexed bus, bus matrix,
switched bus, split-transaction bus, PCI bus, PCI Express bus,
HyperTransport bus, front-side bus (FSB), DDR2/DDR3/
DDR4 bus, LPDDR bus, etc; (6) memory class 2 and memory
class 3 may be combined on the same chip or in the same
package; (7) memory class 2 may be embedded, contained or
part of memory class 3; (8) memory class 1 may be located in

10

15

20

25

30

35

40

45

50

55

60

65

62

a different part of the system physically while still logically
connected to the buffer chip; (9) any combination of the
above. In FIG. 36, the buffer chip is shown as containing
memory class 1. memory class 1 may be a special class of
memory e.g. fast memory, such as SRAM or embedded
DRAM for example, used as a cache, scratchpad or other
working memory etc. that the buffer chip may use to hold data
that needs to be fetched quickly by the CPU for example.
Other examples of use for memory class 1 (or any of the other
memory classes separately or in combination with memory
class 1) may include: (1) test, repair, re-mapping, look-aside
etc. tables listing, for example, bad memory locations in one
or more of the memory classes; (2) page tables; (3) other
memory address mapping functions; (4) cache memory hold-
ing data that later be de-staged to one or more of the other
memory classes; (5) timing parameters used by the system
and CPU; (6) code and data that may be used by the buffer
chip; (7) power management (e.g. the buffer chip, OS, CPU
etc. may turn off other parts of the system while using
memory class 1 to keep energy use low etc.); (8) log files for
memory-mapped storage in one or more of the memory
classes; (9) combinations of the above.

FIG. 37 shows a memory system architecture comprising
multiple memory classes and multiple buffer chips, in accor-
dance with one embodiment. As an option, the exemplary
architecture of FIG. 37 may be implemented in the context
(e.g. in combination with, as part of, together with, etc.) of the
architecture and environment of the previous Figure(s), or
any subsequent Figure(s).

In FIG. 37, buffer chip 1 (in FIG. 37) interfaces the CPU (in
FIG. 37) and memory class 1 (in FIG. 37) and buffer chip 2 (in
FIG. 37) interfaces memory class 1 and memory class 2 (in
FIG. 37). For example in one embodiment, Bus 1 (in FIG. 37)
may be a standard memory bus such as DDR4. memory class
1 may be a fast memory such as SRAM. In such an embodi-
ment Bus 2 (in FIG. 37) may be different (e.g. use a different
protocol, timing etc.) than Bus 1. In FIG. 37, bufter chip 1
may perform a conversion of timing, protocol etc. In FIG. 37,
memory class 1 is shown as separate from buffer chip 1 and
memory class 1.

In alternative embodiments, memory class 1 may be: (1)
part of buffer chip 1; (2) part of buffer chip 2; (3) embedded
with one or more other parts of the system; (4) packaged with
one or more other parts of the system (e.g. in the same inte-
grated circuit package).

InFIG. 37, memory class 1 is shown as using more than one
bus e.g. Bus 2 and Bus 3 (in FIG. 37). In one embodiment,
memory class 1 is an embedded DRAM or SRAM that is part
of one or more of the buffer chips. In alternative embodi-
ments, memory class 1 may not use a shared bus.

In other embodiments: (1) memory class 1 may use a single
bus shared between buffer chip 1 and buffer chip 2 for
example; (2) buffer chip 1 and buffer chip 2 may be combined
and share a single bus to interface to memory class 1; (3)
buffer chip 2 may interface directly to buffer chip 1 instead of
(or in addition to) memory Class 1; (4) any combinations of
the above.

In one embodiment, memory class 1 may be a fast, small
memory (such as SRAM, embedded DRAM, SDRAM, etc.)
and able to quickly satisty requests from the CPU. In such an
embodiment, memory class 2 may be a larger and cheaper but
slower memory (such as NAND flash, SDRAM, etc.).

The various optional features of the architectures based on
that shown in FIG. 37 (and other similar architectures pre-
sented in other Figure(s) here) include (but are not limited to):
(1) low power (e.g. using the ability to shut down memory
class 2 in low-power modes, etc.); (2) systems design flex-

US 9,164,679 B2

63

ibility (e.g. while still using an existing standard memory bus
for Bus 1 with new technology for remaining parts of the
system, or using a new standard for Bus 1 and/or other system
components while using existing standards for the rest of the
system, etc.); (3) low cost (e.g. mixing high performance but
high cost memory class 1 with lower performance but lower
cost memory class 2, etc.); (4) upgrade capability, flexibility
with (planned or unplanned) obsolescence (e.g. using an old/
new CPU with new/old memory, otherwise incompatible
memory and CPU, etc.); (5) combinations of the above.

In alternative embodiments, Bus 1 and Bus 2 (or any com-
bination Bus X and Bus Y of the bus connections shown in
FIG. 37, such as Bus 3 and Bus 4 (in FI1G. 37), Bus 2 and Bus
3, or other combinations of 2, 3, or 4 buses etc.) may use: (1)
the same protocol; (2) the same protocol but different timing
versions (e.g. DDR2, DDR3, DDR4 but with a different tim-
ing, etc.); (3) different data widths (e.g. Bus X may use 64 bits
of'data and Bus Y may use 512 bits etc.); (4) different physical
versions of the same protocol (e.g. Bus X may be a JEDEC
standard DDR3 bus with a 72-bit wide bus with ECC protec-
tion intended for registered DIMMs; Bus Y may be the same
JEDEC standard DDR3 bus but with a 64-bit wide data bus
with no ECC protection intended for unbuffered DIMMs,
etc.); (5) other logical or physical differences such as type
(multi-drop, multiplexed, parallel, split transaction, packet-
based, PCI, PCI Express, etc.); (6) combinations of the above.

FIG. 38 shows a memory system architecture comprising
multiple memory classes and an embedded buffer chip, in
accordance with one embodiment. As an option, the exem-
plary architecture of FIG. 36 may be implemented in the
context (e.g. in combination with, as part of, together with,
etc.) of the architecture and environment of the previous
Figure(s), or any subsequent Figure(s).

In FIG. 38, the buffer chip (in FIG. 38) is shown as embed-
ded in memory class 1 (in FIG. 38). In alternative embodi-
ments: (1) the buffer chip (or multiple buffer chips) may be
packaged with one or more chips, die, etc. comprising one or
more components of memory class 1; (2) one or more buffer
chips may be connected to one or more of memory class 1
chips, die, components etc. using through-silicon vias (TSV)
or other advanced high-density interconnect (HDI) tech-
niques (e.g. chip on board, stacked, wire-bond, etc.); (3)
combinations of the above.

InFIG. 38, Bus 1 (in FIG. 38), the memory bus, is shown as
connected to memory class 1, but in various embodiments
may be connected to the buffer chip, or may be connected to
both the buffer chip and memory class 1. In FIG. 38, Bus 2 (in
FIG. 38) is shown as connecting the buffer chip and memory
Class 2 (in FIG. 38), but in various embodiments may connect
memory class 2 to memory class 1 or may connect memory
class 2 to both memory Class 1 and the buffer chip. In other
embodiments there may be more than two memory classes or
a single memory class (omitting memory class 1 or memory
class 2).

Some embodiments may emulate the appearance that only
asingle memory class is present. For example, in one embodi-
ment there may be system modes that require certain features
(e.g. low-power operation, etc.) and such an embodiment may
modify Bus 2 (e.g. disconnect, shut off, power-down, modify
mode, modify behavior, modify speed, modify protocol,
modify bus width, etc.) and memory class 2 (shut-off, change
mode, power-down, etc.). In other embodiments memory
class 2 may be remote or appear to be remote (e.g. Bus 2 may
be wireless, memory class 2 may be in a different system, Bus
2 may involve a storage protocol, Bus 2 may be WAN, etc.).

In some embodiments, the system configuration (e.g. num-
ber and type of buses, number and technology of memory

10

15

20

25

30

35

40

45

50

55

60

65

64

classes, logical connections, etc.) may, for example, be func-
tionally changed from a two-class memory system to a con-
ventional single-class memory system.

In some embodiments, based on FIG. 38, in which there
may be more than two memory classes for example, the
system configuration may be changed from n-class to m-class
(e.g. from 3 memory classes to 1, 3 classes to 2, 2 classes to 3,
etc.) depending on different factors (e.g. power, speed, per-
formance, etc.). Such factors may vary with time and in some
embodiments changes to configuration may be made “on the
fly” in response for example to the cost of an operation (e.g.
length of time, energy cost, battery life, tariffs on cell phone
data rate, costs based on data transferred, rates based on time,
fees based on copies performed remotely, etc.) and/or the type
of operation or operations being performed (e.g. watching a
movie, long file copy, long computation, low battery, per-
forming a backup, or combination of these).

In one embodiment, one operation O1 may be started at
time t1 on a consumer electronics device (tablet, laptop, cell
phone) that requires low performance with high memory
capacity but for a short time. The memory configuration may
be configured at tl to use two classes of memory (a 2C
system). Then a second operation O2 is started at time t2
(before the first operation O1 has finished) and O2 would
ideally use a single-class memory system (1C system). The
system, OS, CPU or buffer chip etc. may then decide at 2 to
change (e.g. switch, modify, etc.) to a 1C system.

In other embodiments, given certain factors (e.g. speed
required, CPU load, battery life remaining, video replay qual-
ity, etc.) the system may remain as 2C, as configured at t1. At
time t3 the first operation O1 completes. Again at t3 the
system may make a decision to change configuration. In this
case the system may decide at t3 to switch from 2C to 1C.

FIG. 39 shows a memory system with two-classes of
memory: DRAM (in FIG. 39) and NAND flash (in FIG. 39),
in accordance with one embodiment. As an option, the exem-
plary architecture of FIG. 39 may be implemented in the
context (e.g. in combination with, as part of, together with,
etc.) of the architecture and environment of the previous
Figure(s), or any subsequent Figure(s).

In FIG. 44, the buffer chip (in FIG. 39) is shown separate
from memory class 1 (in FIG. 39) and memory class 2 (in
FIG. 39). In FIG. 39, the CPU (in FIG. 39) is connected to the
buffer chip using Bus 1 (in FIG. 39), the memory system bus;
the buffer chip is connected to memory Class 1 using Bus 2 (in
FIG. 39); and the buffer chip is connected to memory class 2
using Bus 3 (in FIG. 39). In FIG. 39, memory class 1 is shown
as DRAM, and memory class 2 is shown as flash.

In other embodiments: (1) memory class 1 may be any
other form of memory technology (e.g. SDRAM, DDR,
DDR2, DDR3, DDR4, GDDR, PRAM, MRAM, FeRAM,
embedded DRAM, eDRAM, SRAM, etc.); (2) memory class
2 may also be any form of memory technology; (3) memory
class 1 and memory class 2 may be the same memory tech-
nology but different in: (1) die size or overall capacity (e.g.
memory class 1 may be 1 GB and memory class 2 may be 16
GB); (2) speed (e.g. memory class 1 may be faster than
memory class 2); (3) bus width or other bus technology; (4)
other aspect; (5) a combination of these.

In other embodiments, Bus 1, Bus 2 and Bus 3 may use one
or more different bus technologies depending on the memory
technology of memory class 1 and memory class 2. Although
two memory classes are shown in FIG. 39, in some embodi-
ments the buffer chip may have the capability to connect to
more than two memory class technologies. In FIG. 39,
memory class 1 and memory class 2 are shown as single
blocks in the system diagram.

US 9,164,679 B2

65

In some embodiments, both memory class 1 and memory
class 2 may each be composed of several packages, compo-
nents or die. In FIG. 39 both Bus 2 and Bus 3 are shown as a
single bus. Depending on how many packages, components
or die are used for memory class 1 and memory class 2, in
some embodiments both Bus 1 and Bus 3 may be composed
of several buses. For example Bus 2 may be composed of
several buses to several components in memory class 1. Inan
embodiment, for example, that memory class 1 is composed
of four 1 Gb DRAM die, there may be four buses connecting
the buffer chip to memory class 1. In such an embodiment,
these four buses may share some signals, for example: (1)
buses may share some, all or none of the data signals (e.g. DQ,
etc.); (2) buses may share some, all or none of the control
signals and command signals (e.g. CS, ODT, CKE, CLK,
DQS, DM, etc.); (3) buses may share some, all, or none of the
address signals (e.g. bank address, column address, row
address, etc.). Sharing of the bus or other signals may be
determined by various factors, including but not limited to:
(1) routing area and complexity (e.g. on a DIMM, on a moth-
erboard, in a package, etc.); (2) protocol violations (e.g. data
collision on a shared bus, timing violations between ranks
determined by CS, etc.); (3) signal integrity (e.g. of multiple
adjacent lines, caused by crosstalk on a bus, etc.); (4) any
combination of these.

FIG. 40 shows details of page copying methods between
memory classes in a memory system with multiple memory
classes, in accordance with one embodiment.

As an option, the exemplary methods of FIG. 40 may be
implemented in the context (e.g. in combination with, as part
of, together with, etc.) of the architecture and environment of
the previous Figure(s), or any subsequent Figure(s).

In FIG. 40 several examples of methods to copy pages are
shown. Not all possible copying options, copying methods, or
copying techniques are shown in FIG. 40, but those that are
shown are representative of the options, methods, techniques
etc. that may be employed in various embodiments.

In FIG. 40, memory class 1 (in FIG. 40) contains pages
marked 1 to N. In FIG. 40, in one embodiment, memory class
2 (in FIG. 40) contains pages marked N+1, N+2, etc., as well
as pages that are marked MFT, F1, F2, etc. In one embodi-
ment, Page MFT represents a Master File Table or equivalent
table that is part of an OS file system. In such an embodiment,
the MFT may (and, in some embodiment, may) span more
than one page but has been represented as a single page in
FIG. 40 for simplicity. In FIG. 40, Page F1, Page F2, etc.
represent files that may be in memory class 2 for one or more
purposes (e.g. part of a memory-mapped filesystem, for
demand paging, part of a filesystem cache, etc.). In FIG. 40,
Page F1 (or Page F2, Page F3, etc.) may be a single file, part
ofa file or contain multiple files. Although only memory class
2 is shown in FIG. 40 as containing files and related tables,
one or more files and related tables could also be present in
memory class 1, but that has not been shown in FIG. 40 for
simplicity.

In FIG. 40, step Copy 1 shows a page being copied from
memory class 2 to memory class 1. In FIG. 40, step Copy 2
shows a page being copied, moved, or duplicated in memory
class 1. In FIG. 40, step Copy 3 shows a page being copied
from memory class 1 to memory class 2. In FIG. 40, step
Copy 4 shows a copy from a page in memory class 1 to a file
in memory class 2. In FIG. 40, step Copy 5 shows a file being
copied, moved or duplicated in memory class 2.

In different embodiments the copy operations described
may be triggered by various mechanisms including, but not

25

40

45

65

66
limited to: (1) using commands from the CPU (or OS, etc.);
(2) using commands from one or more buffer chips; (3) com-
binations of these.

FIG. 41 shows the timing equations and relationships for
the connections between a buffer chip and a DDR2 SDRAM
for a write to the SDRAM as shown in FIG. 48, in accordance
with one embodiment.

In FIG. 41, the memory controller in the CPU (not shown)
may be configured to operate with DDR2 SDRAM. In FIG.
41, the relationship between read latency of a DDR2 SDRAM
(RL, or CL for CAS latency) and the write latency (WL, or
CWL) is fixed as follows: WL=RIL-1. In this equation “1”
represents one clock cycle and the units of RL. and WL are
clock cycles. The read latency of the DDR2 SDRAM is rep-
resented by d2=RL.. Then the read latency as seen by the CPU,
RLD, can be written in terms of RL and the delays of the
buffer chip as follows: RLD=RIL+d1+d3. In this equation, d1
represents the delay of the buffer chip for the address bus for
reads. The write latency as of the DDR2 SDRAM, WL, can be
written in terms of the write latency as seen by the CPU,
WLD, and delays of the buffer chip: WL=WLD+d3-d4. In
this equation d4 represents the delay of the buffer chip for the
address bus for writes. The CPU enforces the same relation-
ship between WLD and RLD as is true for the SDRAM values
WL and RL: WLD=RLD-1. Thus, the following equation is
true for the protocol between the buffer chip and DDR2
SDRAM: d4=2d3+d1.

This equation implies that the delay of the address bus (and
control bus) depends on the type of command (e.g. read,
write, etc.). Without this command-dependent delay, the
interface between buffer chip and SDRAM may violate stan-
dard (e.g. JEDEC standard, etc.) timing parameters of the
DDR2 SDRAM.

In various embodiments, logic that introduces a delay may
be included in any of the buffer chips present in any designs
that are described in other Figure(s) and that interface (e.g.
connect, couple, etc.) the CPU to DDR2 SDRAM. In one
embodiment, the memory controller and/or CPU may be
designed to account for any timing issue caused by the pres-
ence of the buffer chip (and thus the equation relating WLD to
RLD may no longer be arestriction). In such an embodiment,
using a potentially non-standard design of CPU and/or
memory controller, the design of the buffer chip may be
simplified.

In other embodiments, the logic in the buffer chip may be
used to alter the delay(s) of the bus(es) in order to adhere (e.g.
obey, meet timing, etc.) to standard (e.g. JEDEC standard,
etc.) timing parameters of the DDR2 SDRAM.

FIG. 42 shows the timing equations and relationships for
the connections between a buffer chip and a DDR3 SDRAM
for a write to the SDRAM as shown in FIG. 48, in accordance
with one embodiment.

In FIG. 42, the relationship between write latency and read
latency is more complex than DDR2 and is as follows:
WL=RL-K; where K is an integer (number of clock cycles).
The relationship governing the buffer chip delays is then:
d4=2d3+d1+(K-1). In various embodiments, the memory
controller and/or CPU may follow the JEDEC DDR3 proto-
col, and in such embodiments the buffer chip may insert a
command-dependent delay in the bus(es) (e.g. address bus,
control bus, etc.) to avoid timing issues.

In other embodiments one or more buffer chips may be
used. Such buffer chips may be the same or different. In such
embodiments, for example, delays may be introduced by
more than one buffer chip or by combinations of delays in
different buffer chips.

US 9,164,679 B2

67

In other embodiments, the delays may be inserted in one or
more buses as relative delays (e.g. delay inserting a delay da
in all buses but one with that one bus being delayed instead by
a delay of (da+db) may be equivalent to (e.g. viewed as,
logically equivalent to, etc.) a relative delay of db, etc.).

FIG. 43 shows a system including components used for
copy involving modification of the CPU page table, in accor-
dance with one embodiment.

In FIG. 43, the memory system comprises twWo memory
classes. In FIG. 43, Page X (1) (in FIG. 43) is being copied to
Page X (2) (in FIG. 43). In FIG. 43, the CPU (in FIG. 43)
contains a Page Table (in FIG. 43). The Page Table contains a
map from Virtual Address (VA) (in FIG. 43) to Physical
Address (PA) (in FIG. 43). In FIG. 43, the CPU contains an
RMAP Table (in FIG. 43). In Linux a reverse mapping
(RMAP) is kept in a table (an RMAP table) that maintains a
linked list containing pointers to the page table entries (PTEs)
of every process currently mapping a given physical page.
The Microsoft Windows OS versions contain a similar struc-
ture. The RMAP table essentially maintains the reverse map-
ping of a page to a page table entry (PTE) (in FIG. 43) and
virtual address. In an OS, the RMAP table is used by the OS
to speed up the page unmap path without necessarily requir-
ing a scan of the process virtual address space. Using the
RMAP table improves the unmapping of shared pages (be-
cause of the availability of the PTE mappings for shared
pages), reduces page faults (because PTE entries are
unmapped only when required), reduces searching required
during page replacement as only inactive pages are touched,
and there is only a low overhead involved in adding this
reverse mapping during fork, page fault, mmap and exit paths.
This RMAP table may be used, if desired, to find a PTE from
a physical page number or PA. In FIG. 43, the CPU contains
a Memory Allocator (in FIG. 43). The Memory Allocator may
be used, if desired, to allocate a new page in the memory
system.

FIG. 44 shows a technique for copy involving modification
of'the CPU page table, in accordance with one embodiment.

In FIG. 44, the copy is triggered by a request from the
memory system to the CPU to perform a copy. This is just one
example of a copy. Other copy operations may be: (1) trig-
gered by the CPU and passed to the memory system as a
command with the copy being executed autonomously by the
memory system; (2) triggered by the memory system and
executed autonomously by the memory system; (3) triggered
by the CPU and executed by the CPU; (4) combinations of
these. FIG. 44 shows the following steps: (1) Step 1 is the
entry to a method to swap two pages in the memory system
(the same process may be used for other operations e.g. move,
copy, transfer, etc.); (2) Step 2 uses the memory allocator in
the CPU to allocate a new page in the memory system with
address VA1. The new page could be in any of the memory
classes in the memory system; (3) Step 3 maps the physical
address (e.g. page number, etc.) of the page to be swapped
(e.g. copied, moved, etc.) to the PTE using the RMAP table
and determines address VA2; (4) Step 4 swaps (e.g. moves,
copies, transfers, etc.) Page (1) to Page (2) using VA 1 and
VA2; (5) Step S updates the Page Table; (6) Step 6 updates the
Page Table cache or TLB; (7) Step 7 releases Page (1) for
move, swap, etc. operations where the old page is no longer
required.

FIG. 45 shows a memory system including Page Table (in
FIG. 45), buffer chip (in FIG. 45), RMAP Table (in FIG. 45),
and Cache (in FIG. 45), in accordance with one embodiment.

In FIG. 45 in one embodiment the Page Table and RMAP
Table may be integrated into the memory system. In FIG. 45
these components have been shown as separate from the

20

35

40

45

50

68

buffer chip, memory class 1 (in FIG. 45) and memory class 2
(inFIG. 45). In one embodiment the Page Table, RMAP Table
and Cache are integrated with the buffer chip. In other
embodiments these components may be integrated with (or
separate from) one or more of the following components
shown in FI1G. 45: (1) memory class 1; (2) memory class 2; (3)
buffer chip.

In some embodiments, the Cache may be used to hold
information contained in the Page Table and/or RMAP Table.

In FIG. 45, the presence of the Page Table allows the
memory system to autonomously (e.g. without help from the
CPU, OS, etc.) perform a mapping of VA (in FIG. 45) to PA
(in FIG. 45). In FIG. 45 the presence of the RMAP Table
allows the memory system to autonomously perform a map-
ping of PA to VA. These mapping functions are useful in page
operations (e.g. move, copy, swap, transfer, etc.) that may be
performed, for example, by the buffer chip.

FIG. 46 shows a memory system access pattern, in accor-
dance with one embodiment.

In FIG. 46, patterns of access to certain memory locations
in a memory system are diagrammed. In FIG. 46, the X-axis
represents page number within the memory system (with a
page size of 4 kBytes). In FIG. 46, the X-axis represents the
cache line number within a page (with a cache line size of 64
Bytes there are 64 cache lines in a 4-kByte page). By running
memory traces it is often found there are certain hot spots in
memory, marked in FIG. 46 by hot spots H1, H2, H3, and H4.
Each of these hot spots represent a sequence of cache lines
that are repeatedly accessed (e.g. frequently executed code
routines, frequently accessed data, etc.) more frequently than
other areas of memory.

FIG. 47 shows memory system address mapping functions,
in accordance with one embodiment.

In FIG. 47, the 32-bit Address (in FIG. 47) in a 32-bit
system (e.g. machine (physical or virtual), CPU, OS, etc.) is
shown divided into a 12-bit Offset and 30-bit Physical Page
Number.

In FIG. 47, one embodiment of an address mapping uses
Map (1) (in FIG. 47) shows how the Address may be mapped
to the memory system. In FIG. 47, Map (1) the bits are as
follows: (1) bits 0-2 correspond (e.g. map, or are used as, etc.)
to the Byte Address (in FIG. 47) of the memory system; (2)
bits 3-12 correspond to the Column Address (in FIG. 47) of
the memory system; (3) bits 13-25 correspond to the Row
Address (in FIG. 47) of the memory system; (4) bits 26-27
correspond to the Bank (in FIG. 47) of the memory system;
and bits 28-31 correspond to the Rank (in FIG. 47) of the
memory system.

In FIG. 47, Map (2) shows an embodiment that uses an
alternative system address mapping to the memory system
(e.g. the Bank address has moved in position from that shown
in Map (1) in FIG. 47). Depending on several factors (e.g.
type of memory access, type of program being executed, data
patterns, etc.) the memory access patterns may favor one
address mapping over another address mapping. For
example, in some programs (e.g. modes of operation, etc.)
Map (1) of FIG. 47 combined with the access pattern shown
in FIG. 46 may result in better performance of the memory
system (e.g. lower power, higher speed, etc.). This may be
especially true when the memory system comprises multiple
memory classes and, for example, it may be desired that the
hot spots (as described in F1G. 46 for example) should remain
in one class of memory.

In various embodiments, the address mapping function
may thus be controlled as described, especially for memory
systems with multiple memory classes.

US 9,164,679 B2

69

FIG. 48 shows a memory system that alters address map-
ping functions, in accordance with one embodiment.

In FIG. 48, the buffer chip (in FIG. 48) contains logic that
may receive an address from the CPU (in FIG. 48) (e.g. from
memory controller, etc.) and is capable of changing (e.g.
swizzling, re-mapping, altering, etc.) the address mapping. In
one embodiment, the address from the CPU may use Map (1)
(in FIG. 48). In another embodiment, the buffer chip may
change Map (1) to Map (2) (in FIG. 48).

The ability to change address mapping may be used in
several ways. For example, if memory class 1 in FIG. 48 is a
small but fast class of memory relative to the larger but slower
memory class 2 (in FIG. 48), then, in one embodiment for
example, one type of map may keep hot spots (as described in
FIG. 46 and marked H1 to H4 in FIG. 48) in memory class 1.

In alternative embodiments: (1) the CPU (e.g. machine
(virtual or physical), OS, etc.) may instruct (e.g. based on
operating mode, by monitoring memory use, by determining
memory hot spots, by pre-configured statistics for certain
programs, etc.) the buffer chip to alter from Map (x) to Map
(y), where Map (x) and Map (y) are arbitrary address map-
pings; (2) the buffer chip may configure the address mapping
to Map (x) (where Map (x) is an arbitrary address map) based
on memory use and/or other factors (e.g. power, wear-level-
ing of any or all memory classes, etc.); (3) different address
maps may be used for any or all of the memory classes; (4) the
memory classes may be identical but may use different
memory maps; (5) and/or any combination of these.

FIG. 49 illustrates an exemplary system 4900 in which the
various architecture and/or functionality of the various pre-
vious embodiments may be implemented. As shown, a sys-
tem 4900 is provided including at least one host processor
4901 which is connected to a communication bus 4902. The
system 4900 also includes a main memory 4904. Control
logic (software) and data are stored in the main memory 4904
which may take the form of random access memory (RAM).

The system 4900 also includes a graphics processor 4906
and a display 4908, e.g. a computer monitor.

The system 4900 may also include a secondary storage
4910. The secondary storage 4910 includes, for example, a
hard disk drive and/or a removable storage drive, representing
a floppy disk drive, a magnetic tape drive, a compact disk
drive, etc. The removable storage drive reads from and/or
writes to a removable storage unit in any desired manner.

Computer programs, or computer control logic algorithms,
may be stored in the main memory 4904 and/or the secondary
storage 4910. Such computer programs, when executed,
enable the system 4900 to perform various functions.
Memory 4904, storage 4910 and/or any other storage are
possible examples of computer-readable media.

In one embodiment, the architecture and/or functionality
of the various previous figures may be implemented in the
context of the host processor 4901, graphics processor 4906,
a chipset (e.g. a group of integrated circuits designed to work
and sold as a unit for performing related functions, etc.),
and/or any other integrated circuit for that matter.

Still yet, the architecture and/or functionality of the various
previous figures may be implemented in the context of a
general computer system, a circuit board system, a game
console system dedicated for entertainment purposes, an
application-specific system, and/or any other desired system.
For example, the system 4900 may take the form of a desktop
computer, lap-top computer, and/or any other type of logic.
Still yet, the system 4900 may take the form of various other
devices including, but not limited to, a personal digital assis-
tant (PDA) device, a mobile phone device, a television, etc.

10

15

20

25

30

35

40

45

50

55

60

65

70

Further, while not shown, the system 4900 may be coupled
to a network [e.g. a telecommunications network, local area
network (LAN), wireless network, wide area network (WAN)
such as the Internet, peer-to-peer network, cable network,
etc.] for communication purposes.

As used herein, the singular forms (e.g. a, an, the, etc.) are
intended to include the plural forms as well, unless the con-
text clearly indicates otherwise.

The terms comprises and/or comprising, when used in this
specification, specify the presence of stated features, integers,
steps, operations, elements, and/or components, but do not
preclude the presence or addition of one or more other fea-
tures, integers, steps, operations, elements, components, and/
or groups thereof.

In the following description and claims, the terms include
and comprise, along with their derivatives, may be used, and
are intended to be treated as synonyms for each other.

In the following description and claims, the terms coupled
and connected may be used, along with their derivatives. It
should be understood that these terms are not necessarily
intended as synonyms for each other. For example, connected
may be used to indicate that two or more elements are in direct
physical or electrical contact with each other. Further,
coupled may be used to indicate that that two or more ele-
ments are in direct or indirect physical or electrical contact.
For example, coupled may be used to indicate that that two or
more elements are not in direct contact with each other, but
the two or more elements still cooperate or interact with each
other.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the inven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a circuit, component, mod-
ule or system. Furthermore, aspects of the present invention
may take the form of a computer program product embodied
in one or more computer readable medium(s) having com-
puter readable program code embodied thereon.

In different embodiments, emphasis and/or de-emphasis
may be performed at the designated driver(s) in a multiple die
stack [e.g. the transmitter, driver, re-driver on a buffer etc.
both for the upstream memory bus(es) or downstream
memory bus(es), etc.]. Additionally, in different embodi-
ments, emphasis and/or de-emphasis may be performed at the
designated receivers(s) in a multiple die stack [e.g. the receiv-
er(s) both for the upstream memory bus(es) or downstream
memory bus(es), etc.]. Further, in different embodiments,
emphasis and/or de-emphasis may be performed at the des-

US 9,164,679 B2

71

ignated receivers(s) in amultiple die stack [e.g. the receiver(s)
for the downstream memory bus(es), etc.] and/or at the des-
ignated driver(s) in a multiple die stack [e.g. the transmitter,
driver, re-driver on a buffer etc. both for the upstream memory
bus(es), etc.].

In various embodiments (e.g. including any of those
embodiments mentioned previously or combinations of these
embodiments, etc.), the emphasis and/or de-emphasis may be
adjustable. In various embodiments, the emphasis and/or de-
emphasis may be adjusted [e.g. tuned, varied, altered in func-
tion (e.g. by using more than one designated receiver and/or
designated driver used for emphasis and/or de-emphasis,
etc.), moved in position through receiver or driver configura-
tion, etc.] based on various metrics (e.g. characterization of
the memory channel, calculation, BER, signal integrity, etc.).

The capabilities of the present invention can be imple-
mented in software, firmware, hardware or some combination
thereof.

As one example, one or more aspects of the present inven-
tion can be included in an article of manufacture (e.g., one or
more computer program products) having, for instance, com-
puter usable media. The media has embodied therein, for
instance, computer readable program code means for provid-
ing and facilitating the capabilities of the present invention.
The article of manufacture can be included as a part of a
computer system or sold separately.

Additionally, at least one program storage device readable
by a machine, tangibly embodying at least one program of
instructions executable by the machine to perform the capa-
bilities of the present invention can be provided.

The diagrams depicted herein are just examples. There
may be many variations to these diagrams or the steps (or
operations) described therein without departing from the
spirit of the invention. For instance, the steps may be per-
formed in a differing order, or steps may be added, deleted or
modified. All of these variations are considered a part of the
claimed invention.

While various embodiments have been described above, it
should be understood that they have been presented by way of
example only, and not limitation. Thus, the breadth and scope
of a preferred embodiment should not be limited by any of the
above-described exemplary embodiments, but should be
defined only in accordance with the following claims and
their equivalents.

What is claimed is:

1. An apparatus, comprising:

a memory sub-system capable of being communicatively
coupled to a standard memory bus communicatively
coupled to a processing unit, the memory sub-system
including:

a first memory of a first memory class,

a second memory of a second memory class,

a first circuit communicatively coupled to the second
memory, and

a second circuit communicatively coupled to the first
circuit and the first memory;

wherein the apparatus is configured to, for a first thread:

receive, at the first circuit, a first command that is a special
command or includes special data from the processing
unit via the standard memory bus, and

in response to the first command and based on the special
command or the special data, issue a second command
from the first circuit to the second circuit for fetching at
least a portion of first data from the first memory and
transferring the at least portion of the first data from the
first memory to the second memory;

15

20

25

30

35

40

45

55

72

wherein the apparatus is further configured to, before
completion of at least one of the fetching the at least
portion of the first data or the transferring the at least
portion of the first data, for a second thread:
receive, at the first circuit, a third command from the
processing unit via the standard memory bus that is
capable of causing issuance of a fourth command
from the first circuit to the second circuit for fetching
at least a portion of second data from the first memory
and transferring the at least portion of the second data
from the first memory to the second memory;
wherein the apparatus is further configured to:
provide access to a status, and
receiving a fifth command for reading the first data.

2. The apparatus of claim 1, wherein the apparatus is con-
figured such that the second circuit includes the first memory,
and the second command includes a single command.

3. The apparatus of claim 1, wherein the apparatus is con-
figured such that the first thread and the second thread are
associated with the processing unit.

4. The apparatus of claim 1, wherein the apparatus is con-
figured such that the first command and the third command
are non-standard commands and the second command and
the fourth command are standard commands.

5. The apparatus of claim 1, wherein the apparatus is con-
figured such that the first command and the third command
include read commands.

6. The apparatus of claim 1, wherein the apparatus is con-
figured such that the first command and the third command
each initiate a random access data read.

7. The apparatus of claim 1, wherein the apparatus is con-
figured such that the third command is received before the
completion of the fetching the at least portion of the first data.

8. The apparatus of claim 1, wherein the apparatus is con-
figured such that the third command is received before the
completion of the transferring the at least portion of the first
data.

9. The apparatus of claim 1, wherein the apparatus is con-
figured such that at least one of the fetching the atleast portion
of'the second data or the transferring the at least portion of the
second data associated with the second thread is completed
before the completion of at least one of the fetching the at
least portion of the first data or the transferring the at least
portion of the first data associated with the first thread.

10. The apparatus of claim 1, wherein the apparatus is
configured such that for the first thread, the fifth command is
received, at the first circuit, from the processing unit via the
standard memory bus, for fetching the at least portion of the
first data from the second memory.

11. The apparatus of claim 10, wherein the apparatus is
configured such that the fetching the at least portion of the
second data associated with the second thread is completed
before the fifth command associated with the first thread is
received.

12. The apparatus of claim 10, wherein the apparatus is
configured such that the transferring the at least portion of the
second data associated with the second thread is completed
before the fifth command associated with the first thread is
received.

13. The apparatus of claim 10, wherein the apparatus is
configured such that the fetching the at least portion of the
second data associated with the second thread is completed
before the at least portion of the first data is fetched from the
second memory in association with the first thread.

14. The apparatus of claim 10, wherein the apparatus is
configured such that the transferring the at least portion of the
second data associated with the second thread is completed

US 9,164,679 B2

73

before the at least portion of the first data is fetched from the
second memory in association with the first thread.

15. A system including the apparatus of claim 1, and further

comprising the standard memory bus.

16. The apparatus of claim 1, wherein the apparatus is

configured such that at least one of:

said standard memory bus includes at least one of a DDR3
bus or a DDR4 bus;

said second memory includes at least one of static random
access memory, dynamic random access memory, or
embedded random access memory;

said first memory or said second memory is part of the first
circuit;

said first memory or said second memory is part of the
second circuit;

said first command is the special command;

said first command is the special command, and the special
command is received from a driver;

said first command is the special command, and the special
command results from a page miss;

said first command is the special command, and the special
command results from an operating system request;

said first command is the special command, and the special
command is special by virtue of including the special
data;

said first command is the special command, and the special
command is special by virtue of the at least portion of the
first data being fetched from the first memory;

said first command is the special command, and the special
command includes a non-standard command,;

said first command includes the special data;

said first command includes the special data, and the spe-
cial data includes at least one of control data, command
data, or status data;

said second command is issued based on the special com-
mand; or

said second command is issued based on the special data.

17. An apparatus, comprising:

a memory sub-system capable of being communicatively
coupled to a standard memory bus communicatively
coupled to a processing unit, the memory sub-system
including:

a first memory of a first memory class,

a second memory of a second memory class,

a first circuit communicatively coupled to the second
memory, and

a second circuit communicatively coupled to the first
circuit and the first memory;
wherein the apparatus is configured, in connection with a
first thread, for:
receiving, at the first circuit, a first command that is a
special command or includes special data from the
processing unit via the standard memory bus,

in response to the first command and as a function of the
special command or the special data, issuing a second
command from the first circuit to the second circuit
for fetching at least a portion of first data from the first
memory and transferring the at least portion of the
first data from the first memory to the second memory,
and

receiving, at the first circuit, a third command from the
processing unit via the standard memory bus, for
fetching the at least portion of the first data from the
second memory;

10

15

20

25

30

35

40

45

50

55

60

74

wherein the apparatus is further configured, in connection
with a second thread, before completion of the fetching
the at least portion of the first data from the second
memory, for:
receiving, at the first circuit, a fourth command from the

processing unit via the standard memory bus that is
capable of causing issuance of a fifth command from
the first circuit to the second circuit for fetching at
least a portion of second data from the first memory
and transferring the at least portion of the second data
from the first memory to the second memory.

18. An apparatus, comprising:

a memory sub-system capable of being communicatively
coupled to a standard memory bus communicatively
coupled to a processing unit, the memory sub-system
including:

a first memory of a first memory class,

a second memory of a second memory class,

a first circuit communicatively coupled to the second
memory, and

a second circuit communicatively coupled to the first
circuit and the first memory;
wherein the apparatus is configured, in connection with a
first thread, for:
receiving, at the first circuit, a first command that is
special from the processing unit via the standard
memory bus,

in response to the first command, issuing a second com-
mand from the first circuit to the second circuit for
fetching at least a portion of first data from the first
memory and transferring the at least portion of the
first data from the first memory to the second memory,
and

receiving, at the first circuit, a third command from the
processing unit via the standard memory bus, for
fetching the at least portion of the first data from the
second memory;

wherein the apparatus is further configured, in connection
with a second thread, before receiving the third com-
mand, for:
receiving, at the first circuit, a fourth command from the

processing unit via the standard memory bus that is
capable of causing issuance of a fifth command from
the first circuit to the second circuit for fetching at
least a portion of second data from the first memory
and transferring the at least portion of the second data
from the first memory to the second memory.

19. The apparatus of claim 18, wherein the first memory
includes flash memory, the second memory includes random
access memory, and the apparatus is operable such that the
first command is special by virtue of enabling DDR protocol-
compliant communication of control information via the
standard memory bus for controlling the second circuit to
effect one or more results that are undescribed in a DDR
protocol specification.

20. The apparatus of claim 18, wherein the first memory
includes flash memory, the second memory includes random
access memory, and the apparatus is operable such that the
first command is special by virtue of including data of which
a portion is used in connection with a corresponding com-
mand associated with the second circuit.

#* #* #* #* #*

